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1 Introduction

Group theory is a useful mathematical language that helps describe the invariance properties
of physical systems. These notes provide a quick introduction to group theory, primarily aimed
at developing the tensorial language used by physicists. The main concepts of Lie groups are
also introduced.

2 Preliminaries: Review of Linear Algebra

Let us consider a vector space V and a basis of vectors |ei〉, so that an arbitrary vector |v〉 ∈ V
can be expressed as a linear combination of them:

|v〉 = vi|ei〉 (1)

where repeated indices are automatically summed over (Einstein summation convention). We
assume V to be of finite dimension. Also, we use Dirac’s bra-ket notation that should be fa-
miliar from quantum mechanics.

Linear operators

A linear operator A gives a new vector when acting on any given vector

A : V −→ V

|v〉 −→ |v′〉 = A|v〉 .
(2)

Using linearity, we can express the new vector as

|v′〉 = A|v〉 = A(vi|ei〉) = viA|ei〉 = vi|e′i〉 = viAj i|ej〉
= Aijv

j|ei〉 = v′i|ei〉
(3)

where we have set |e′i〉 = A|ei〉 = Aj i|ej〉, since the transformed vectors of the basis can be ex-
pressed as linear combinations of the original basis. In the second line, we have renamed indices
to extract the components of the transformed vector. |v′〉 = v′i|ei〉. This allows us to recognize
the matrix elements Aij of the operator A and how it operates on the vector components vi,
namely v′i = Aijv

j.

Physicist’s notation

Physicists often use only the components vi to indicate the vector |v〉, assuming that a basis
(or reference frame) has been chosen. Thus, the linear transformation above is written as

v′i = Aijv
j (4)
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where Aij are the entries of the matrix that performs the linear transformation on the column
vector vj. Note that the second index of the matrix is summed over with the index of the vector
components.

This linear transformation can be expressed in matrix language using column vectors and
matrices. Considering the example of a two-dimensional vector space, where indices can take
only two values, we write

vi −→ v =

(
v1

v2

)
(5)

and similarly,

Aij −→ A =

(
A1

1 A1
2

A2
1 A2

2

)
(6)

where the first index (conventionally written as an upper index) is the row index, while the
second index (conventionally written as a lower index) is the column index. Then, eq. (4) is
cast as

v′ = Av . (7)

Matrix multiplication

Since we will use extensively square matrices, mostly interpreted as linear operators acting on
a vector space, let us review some of their properties. For square matrices, one can define a
product and several other operations. We review these operations using 2 × two matrices, as
the extension to higher dimensions is straightforward. The product of two such matrices

C = AB (8)

is defined as usual by the row-by-column multiplication rule:

C =

(
C1

1 C1
2

C2
1 C2

2

)
=

(
A1

1 A1
2

A2
1 A2

2

)(
B1

1 B1
2

B2
1 B2

2

)
=

(
A1

1B
1

1 + A1
2B

2
1 A1

1B
1

2 + A1
2B

2
2

A2
1B

1
1 + A2

2B
2

1 A2
1B

1
2 + A2

2B
2

2

)
.

This is written more compactly as

Ci
j =

2∑
k=1

AikB
k
j

or using Einstein’s convention as
Ci

j = AikB
k
j . (9)

Thus, we see how the product of matrices is written using components. Note that the prod-
uct of matrices is non-commutative, so AikB

k
j 6= Bi

kA
k
j, that is AB 6= BA. However,

AikB
k
j = Bk

jA
i
k as numbers commute.

Dual space

The dual space Ṽ of an original vector space V is defined as the space of linear maps that
produce a number out of any vector |v〉 ∈ V . An element of the dual space 〈w| ∈ Ṽ is defined
by its action on the vectors |v〉 ∈ V which we write as follows

〈w| : V −→ R

|v〉 −→ 〈w|v〉
(10)
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where we have used the Dirac’s bra-ket notation. In this definition, we have used the field of
real numbers R, but any other field could have been chosen for similar definitions, as the field of
complex numbers C, which is used in quantum mechanics. The set of all such elements defines
the dual space Ṽ , which is itself a vector space. Setting

〈w| = wi〈ẽi| (11)

for a dual basis 〈ẽi| chosen such that1

〈ẽi|ej〉 = δij (12)

one may write
〈w|v〉 =

(
wi〈ẽi|

)(
vj|ej〉

)
= wiv

j〈ẽi|ej〉 = wiv
jδij = wiv

i

that is
〈w|v〉 = wiv

i . (13)

Note that, in using components, the index position tells if we are considering a vector (as in
the case of vi) or a dual vector (as in the case of wi).

The “scalar” wiv
i obtained by contracting a dual vector wi with a vector vi is invariant

under a change of basis of the vector space, i.e. if one considers a new basis |e′i〉. This must be
so as the vectors are independent of how one expresses them through a basis. To understand
algebraically this statement, let us consider that, because of the completeness of the basis
vectors, the two bases must be related through an invertible matrix B with components Bi

j

|e′i〉 = Bi
j|ej〉 (14)

so that an arbitrary vector |v〉 can be expressed equivalently as

|v〉 = vi|ei〉 = v′i|e′i〉 (15)

with the new components v′i fixed by

v′i = Aijv
j (16)

where
AijBi

k = δki (17)

i.e. ATB = 1 and thus A = B−1T .
Similarly, the dual basis vectors must transform as

〈ẽ′i| = Aij〈ẽj| (18)

so that 〈ẽ′i|e′j〉 = δij, while the components of the dual vectors transform as

w′i = Bi
jwj . (19)

1δij is the Kronecker delta defined by

δij =

{
1 if i = i
0 otherwise .
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Thus, one can verify that
〈w|v〉 = wiv

i = w′iv
′i (20)

checking that this number can be computed independently by using the primed or unprimed
components. This is the invariance we were talking about.

The vector spaces V and Ṽ are isomorphic, being of the same dimensions, but this isomor-
phism is not unique. A canonical isomorphism, relating a vector of V to a vector of the dual
space Ṽ in a unique way, can be established if there is a metric on the original vector space V .

Metric

We define a metric g, not necessarily positive definite, as a bilinear function that produces a
real number out of two vectors of V , that we take to be real for the moment. That is,

g : V × V −→ R

|w〉, |v〉 −→ g(|w〉, |v〉)
(21)

so that g(|w〉, |v〉) ∈ R. This metric function is defined to be linear in both entries so that we
can write

g(|w〉, |v〉) = g(wi|ei〉, vj|ej〉) = wivjg(|ei〉, |ej〉) ≡ wivjgij (22)

where we have set gij ≡ g(|ei〉, |ej〉). These are the components of the metric tensor, which we
assume to be invertible, i.e. gij must be invertible as a matrix.

Having a metric, one can define a canonical isomorphism between V and Ṽ , relating in a
unique way a vector of V to a vector of Ṽ . We identify 〈w|, the dual of the vector |w〉, by
writing

〈w| = g(|w〉, · ) (23)

which operates as
〈w|v〉 ≡ g(|w〉, |v〉) ∈ R . (24)

Using linearity, one can expand it as follows

〈w|v〉 = g(|w〉, |v〉) = g(wi|ei〉, vj|ej〉) = wivjg(|ei〉, |ej〉) = wivjgij = wiv
i (25)

where in the last step we have recognized the components wi = gijw
j of the dual vector 〈w|

with respect to the dual basis 〈ẽi| of eqs. (11)–(12). When the metric is positive definite, one
often considers an orthonormal basis in which

gij = 〈ei|ej〉 = δij . (26)

Note that gij can be written as a matrix, but its index structure shows that it cannot be
interpreted as a linear operator acting on V . Rather, it acts on the tensor product V × V as
seen in (21). It can be interpreted as a tensor, as we shall see.

Thus, in physicist’s notation, the vector wi is related to the dual vector wi by lowering its
index with the metric, i.e.,

wi = gijw
j . (27)

The inverse relation makes use of the inverse metric gij ≡ (g−1)ij, which satisfies

gijgjk = δik (28)
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so that wi = gijwj. The canonical isomorphism between a vector space and its dual space
depends on the introduction of a metric. This fact is heavily utilized in the description of
general relativity with tensors.

Let us consider some examples. The euclidean space EN of N dimensions with coordinates
x ∈ RN can be considered as a vector space. It can be endowed with a scalar product that
defines a metric. It can be presented in equivalent ways as

s2 = xTx = xT1x = δijx
ixj (29)

to expose the euclidean metric tensor δij. This metric relates the vector xi to its dual vector xi
by xi = δijx

j. For this particular case, vector and dual vectors coincide, as xi = xi numerically
for any value of the index i.

The Minkowski space M4 of 4 dimensions with coordinates x ∈ R4 is endowed with a scalar
product that is written in various ways as follows

s2 = xTη x = ηµνx
µxν = −(x0)2 + (x1)2 + (x2)2 + (x3)2 (30)

where the metric ηµν has non-vanishing components η00 = −1, and η11 = η22 = η33 = 1, that is

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (31)

We have chosen the greek indices to take the values 0, 1, 2, 3, with 0 indicating the time-like
direction. Note that one should be careful to distinguish upper indices from powers, as the
notation may be potentially ambiguous. In practice, any confusion is always resolved by looking
at the context. The Minkowski metric is not positive definite. Nevertheless, it allows to map
vectors xµ to dual vectors xµ = ηµνx

ν , so that the scalar product above may be written also as
s2 = xµxµ. Notice now that xµ 6= xµ. This construction is at the basis of Special Relativity
when treated with tensors.

Similar definitions of dual spaces and metrics can be extended to complex vector spaces,
such as the Hilbert space of quantum mechanics, with the field R replaced by the field of the
complex numbers C.

Let us describe for example CN , considered as a complex vector space of N complex dimen-
sions. Its dual space, which we name C̃N , is defined as the space of linear maps 〈w| from CN

to C
〈w| : CN −→ C

|z〉 −→ 〈w|z〉 = wiz
i .

(32)

where the components zi and wi are all complex numbers. A canonical map that relates the
two spaces is obtained by introducing a (complex) metric defined by the scalar product

s2 = z†z = z∗i z
i (33)

where z ∈ CN have components zi for i = 1, ..., N , with z∗i denoting their complex conjugates.
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Transposition of matrices

To introduce this concept, let us first consider a matrix with lower indices only. Setting

A =

(
A11 A21

A12 A22

)
(34)

one can define the transposed matrix by exchanging rows and columns. Thus, the transpose of
the matrix A is given by

AT =

(
AT11 AT12

AT21 AT22

)
=

(
A11 A21

A12 A22

)
(35)

i.e.
ATij = Aji (36)

which means precisely exchanging rows with columns. For products of matrices, one finds that

(AB)T = BTAT

(AB)−1 = B−1A−1

detAB = detA detB

(37)

where we recall that the inverse of a matrix exists only if its determinant is nonvanishing. To
familiarize ourselves with these notations, let us observe the following product written using
indices:

A = BTC ←→ Aij = BT
ikCkj = BkiCkj .

where in the last expression, one uses only the entries of B rather than those of BT . This
example shows that one must be careful in reconstructing a product of matrices in an expression
written using indices.

Similarly, one defines the transpose of an operator A with an index structure Aij as follows:

(AT )i
j = Aj i (38)

showing that AT cannot be interpreted as a linear operator on the original vector space V , but
rather as an operator acting on the dual space Ṽ . The index structure of AT shows precisely
that.

3 Definition of a group

Let us define a group G = {g} as a set of elements g that satisfy the following properties:

1. There exists a composition law: given g1, g2 ∈ G, then g1 · g2 = g3 ∈ G.

2. There exists an identity element: ∃e ∈ G such that g · e = e · g = g.

3. There exists an inverse element: if g ∈ G, then ∃g−1 ∈ G such that g · g−1 = g−1 · g = e.

4. Associativity: (g1 · g2) · g3 = g1 · (g2 · g3).
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Discrete groups are those that contain a finite number of elements. For example, the group
Z2 ≡ {1,−1} with the usual multiplication law defines a group with two elements. Lie groups
are groups with an infinite number of elements, where the elements depend continuously on
certain parameters. For example, rotations around the z-axis of our three-dimensional space
form a Lie group whose elements are parameterized by an angle θ ∈ [0, 2π]. For Lie groups,
one can consider infinitesimal transformations, i.e. transformations that are, in a sense, very
close to the identity and lead to the concept of Lie algebras. Abelian groups are those groups
whose elements commute under the composition law: g1 · g2 = g2 · g1 for every elements g1 and
g2 belonging to the group. If this does not happen, the group is said to be non-abelian.

3.1 Examples

Some examples of discrete groups are:

• The cyclic group Zn, the finite group generated by the powers of an element a of the
group, Zn = {e, a, a2, . . . , an−1}, with the condition that an = a0 = e. It is a group

isomorphic to the n-th roots of unity e
2πi
n
k, with k = 0, 1, . . . , n−1. It is an abelian group

for any n.

• The group of permutations of n objects, which contains n! elements. It is denoted by Sn
and is called the symmetric group. One can check that S2 = Z2, while S3 contains six
elements and is the simplest example of a non-abelian group.

Some examples of Lie groups are:

• GL(N,R), the group of real N ×N matrices with determinant 6= 0.

• SL(N,R), the group of real N ×N matrices with determinant = 1.

• O(N), the group of real orthogonal N × N matrices. It describes the invariances of the
scalar product xTx with x ∈ RN .

• SO(N), the group of real orthogonal N ×N matrices with determinant = 1.

• GL(N,C), the group of complex N ×N matrices with determinant 6= 0.

• SL(N,C), the group of complex N ×N matrices with determinant = 1.

• U(1) = {z ∈ C | |z| = 1} = {eiθ | θ ∈ [0, 2π]}, the group of phases. It describes the
invariances of the product z∗z with z ∈ C.

• U(N), the group of unitary N × N matrices. It describes the invariances of the scalar
product z†z with z ∈ CN .

• SU(N), the group of unitary N ×N matrices with determinant = 1.

There are relationships between these groups, for example: U(1) = SO(2); O(N) = Z2 ⊗
SO(N); U(N) = U(1)⊗ SU(N).
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4 Representations

We now introduce the concept of group representation. A representation of an abstract group
G is a “realization” of the multiplicative relations of the group G in a corresponding group of
square matrices, where the product is given by the usual matrix multiplication. These matrices
should be thought of as linear operators that act on a vector space V , whose dimension is called
the dimension of the representation. Explicitly, a representation is given by a mapping

R : G 7−→ Square Matrices

g 7−→ R(g)
(39)

such that

1. R(g1)R(g2) = R(g1 · g2)

2. R(e) = 1 with 1 as the identity matrix.

From this, it also follows that R(g−1)R(g) = R(e) = 1, hence R(g−1) = R−1(g). Associativity
is automatic because matrix multiplication is associative. Thus, all the properties of the group
are explicitly realized by the matrices of a representation.

By thinking of the matrices of a representation as operators that act on a vector space
V of dimension N , the matrices are N × N matrices, and the representation is said to be of
dimension N .

As a very simple example of a representation, consider the cyclic group Z2 = {e, a} with the
relation that a2 = e. Then, a simple two-dimensional representation is given by the following
2× 2 matrices

R(e) =

(
1 0
0 1

)
, R(a) =

(
−1 0
0 −1

)
. (40)

It is easily checked that the matrices of the representation satisfy all the properties of the
abstrarct group Z2 = {e, a}. As we shall understand soon, this representation is reducible, as
it contains two copies of the more simple representation defined in terms of 1× 1 matrices, i.e.
numbers,

R(e) = 1 , R(g) = −1 . (41)

In the list of Lie groups introduced in the previous examples, we have used matrices to
define the groups. Thus, these matrices give rise immediately to a particular representation:
the defining representation (also called the fundamental representation). The elements of the
group in the defining representation naturally perform transformations on vectors belonging to
a vector space V , the vector space on which the matrices act as linear operators. Let va denote
the components of a vector. The matrix R(g), which represents the element g of the abstract
group G, transforms this vector as follows

va
g∈G−→ v′a = [R(g)]ab v

b (42)

where, as usual, [R(g)]ab describes, as the indices a and b vary, the elements of the matrix R(g).
The row index a is the first index and is conventionally placed in the upper position, and the
column index b is the second index and is conventionally placed in the lower position. In this
way, the vectors in the vector space V are transformed by operations associated with the group
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G. Repeated indices are summed over all their possible values, and the convention is used that
in the sum, one index is in the upper position and the other one in the lower position.

At this point, the problem arises of studying how many and what kinds of representations
of a given group exist. In particular, it is useful to know which are their dimensions. This
problem is of great importance for physical applications because the “vectors” of a represen-
tation (generically called “tensors”) can be used to conveniently describe physical quantities
associated with models where G acts as a symmetry group.

In general, equivalent representations are defined as those that are related by similarity

transformations: R(g) and R̃(g) are equivalent representations if

R̃(g) = AR(g)A−1 ∀g ∈ G (43)

where A is a matrix independent of g. This equivalence relation allows us to consider equivalent
representations as essentially the same representation. Indeed, the similarity transformation
simply represents a change of basis in the vector space V : the matrices of the different equivalent
representations identify the same linear operator expressed in different bases.

A reducible representation is a representation equivalent to a representation whose matrices
are block diagonal, for example, R(g) is reducible if

R̃(g) = AR(g)A−1 =

 R1(g) 0 0
0 R2(g) 0
0 0 R3(g)

 ∀g ∈ G (44)

for an appropriate matrix A, and it is said that R(g) is reducible to the three representations
R1(g), R2(g), R3(g). In this example, the vector space V on which the reducible representation
R(g) acts is naturally decomposed as a direct sum of the three vector spaces on which the
representations R1(g), R2(g), R3(g) act, i.e., V = V1⊕V2⊕V3. This reducibility is thus written
as R(g) = R1(g)⊕R2(g)⊕R3(g).

An irreducible representation is a representation that cannot be decomposed as above2.
In the classification of the possible representations of a group G, it is useful to consider only

inequivalent irreducible representations, as all other representations follow from them. Given a
fixed integer N , it is not guaranteed that an irreducible representation of dimension N exists. In
general, only for certain values of N will there be representations of a fixed group G (sometimes
even more than one with the same dimension).

A unitary representation is a representation in terms of unitary matrices (operators). Uni-
tary representations are very useful in applications of quantum mechanics, where the sym-
metries of a quantum system are described by unitary operators acting in Hilbert space (an
infinite-dimensional vector space endowed with a positive-definite norm).

4.1 Upper and Lower Indices, Dotted Indices

In the previous examples, we defined Lie groups using matrices that directly identify a repre-
sentation, the so-called defining (or fundamental) representation. We denote the dimension of
the defining representation by N . As mentioned earlier, we can think of the N × N matrices
of this representation as operators acting on a vector space V of dimension N . We denote the

2For some groups, there can exist reducible representations of a particular type, formed by upper triangular
matrices, but we overlook this subtlety in a first exposition to group theory, as the simplest groups we are
interested in do not show such a phenomenon.
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vectors in V by their components va, where the index a = 1, 2, . . . , N . The vectors va ∈ V are
transformed by the matrices [R(g)]ab of the representation. By definition, a generic vector va

transforms under the action of the group G as follows:

va
g∈G−→ va′ = [R(g)]ab v

b (45)

(note that the convention is used where repeated indices are automatically summed over all
their possible values). Vectors that transform in the manner described above are defined to
have upper indices. Vectors whose components have upper indices belong to vector spaces
equivalent to V and transform the same way under the action of G, as described by (45).

Given the defining representation R(g) that acts on the vector space V , which corresponds
to transforming vectors with upper indices, we can immediately construct three other repre-
sentations:

R(g)∗, the complex conjugate representation acting on V ∗

R(g)−1T , the inverse transposed representation acting on the dual space Ṽ

R(g)−1 †, the inverse Hermitian conjugate3 representation acting on Ṽ ∗.

The vectors they act on have the following index structures by convention, respectively:
vectors with “dotted upper indices” vȧ (vectors in the complex conjugate space V ∗),
vectors with “lower indices” va (vectors in the dual space Ṽ ),
vectors with “dotted lower indices” vȧ (vectors in the complex conjugate dual space Ṽ ∗).
In formulae:

vȧ
g∈G−→ v′ȧ = [R(g)∗]ȧḃ v

ḃ

va
g∈G−→ v′a = [R(g)−1T ]a

b vb (46)

vȧ
g∈G−→ v′ȧ = [R(g)−1 †]ȧ

ḃ vḃ .

It is immediate to verify that these are representations of the group G if R(g) is one. The
different index structure associated with these matrices reflects the fact that they are operators
acting on different vector spaces.

Invariant quantities under the action of the group G can be obtained by taking the scalar
product between vectors with upper indices (sometimes called contravariant) and those with
lower indices (sometimes called covariant), whether dotted or undotted. One can verify the
following identities

vaw
a g∈G−→ v′aw

′a = v′Tw′ = (R(g)−1T v)TR(g)w = vTR(g)−1 R(g)w = vTw = vaw
a

xȧy
ȧ g∈G−→ x′ȧy

′ȧ = x′Ty′ = (R(g)−1 †x)TR(g)∗y = xTR(g)−1 ∗ R(g)∗y = xTy = xȧy
ȧ

(47)

Exercize: rederive these equations using only the index notation.

In general, it makes no group-theoretic sense to contract indices of the vectors described
above in any other way (“contracting” refers to the operation of equating two indices and
summing over all possible values that these indices can assume).

However, some of these different representations may be equivalent to each other, i.e.,
related by a similarity transformation. Indeed, for real representations, R(g)∗ = R(g), so

3Given a matrix R, its Hermitian conjugate (or adjoint) R† is defined as the complex conjugate of the
transpose, R† = RT∗.
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vȧ ∼ va and vȧ ∼ va, where the symbol ∼ means “transforms like”. Thus, in this case, there
is no need to introduce dotted indices. For unitary representations, R(g)−1 = R(g)†, and

therefore R(g)−1† = R(g), so vȧ ∼ va and vȧ ∼ va. Again, there is no need to use dotted
indices. Finally, for unitary and real (i.e., real orthogonal) representations, all four of the
above-described representations are equivalent: there is no need to use dotted indices or lower
indices.4

4.2 Other Representations: Tensor Representations and Tensors

Other representations can be obtained from the tensor product of the previously described
representations. By definition, these representations act on “tensors,” which are elements of
vector spaces obtained from the tensor product of copies of V , V ∗, Ṽ , and Ṽ ∗. Therefore,
tensors, by definition, have a certain number of upper and lower indices, with transformation
properties defined by the nature associated with those indices.

For example, a tensor F ab
c
ḋ
ė is, by definition, an object with N5 components that transform

exactly like the product of the components of the previously defined vectors (tensor product):

F ab
c
ḋ
ė ∼ vaubwcx

ḋyė . (48)

Thus, the tensor F ab
c
ḋ
ė represents (the components of) an element of a vector space of dimen-

sion N5 (because each index can take N values; it corresponds to an element of the vector space

V ⊗ V ⊗ Ṽ ⊗ V ∗ ⊗ Ṽ ∗ and we can write F ab
c
ḋ
ė ∈ V ⊗ V ⊗ Ṽ ⊗ V ∗ ⊗ Ṽ ∗). Under the action of

the group G, it transforms as follows:

F ab
c
ḋ
ė

g∈G−→ F ′
ab
c
ḋ
ė = [R(g)]af [R(g)]bg [R(g)−1T ]c

h [R(g)∗]ḋṁ [R(g)−1 †]ė
ṅ F fg

h
ṁ
ṅ . (49)

This linear transformation law identifies a representation of dimension N5 (the N5 components
are mixed among themselves by an N5 × N5 matrix, implicitly defined by the above formula,
thus providing a representation of the group).

Typically, tensors correspond to reducible representations, i.e. are transformed by reducible
representations. The problem of decomposing representations into irreducible ones now arises.
One way to decompose a representation is to study the tensors on which they act. A first
decomposition operation is to separate the tensors by considering their symmetry properties
under permutations of indices of the same nature (it is therefore useful to know the properties
of the permutation group of n objects, i.e. the symmetric group Sn).

For example, the tensor T ab can be separated into its symmetric part (Sab = Sba) and its
antisymmetric part (Aab = −Aba) as follows:

T ab =
1

2
(T ab + T ba)︸ ︷︷ ︸

Sab

+
1

2
(T ab − T ba)︸ ︷︷ ︸

Aab

. (50)

4The finite-dimensional spinorial representations of the Lorentz group SO(3, 1) are two-dimensional and are
neither unitary nor real (spinorial representations are double-valued representations and correspond to true
representations of the universal covering of the Lorentz group SL(2,C)). In this case, all four different types
of indices are useful (although only two of these four representations are inequivalent). The use of dotted and
undotted indices for these two-component spinors (Weyl spinors) in four spacetime dimensions was introduced
by Van der Waerden. This is why the use of dotted indices is sometimes referred to as the “Van der Waerden
notation”.
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It is easy to convince oneself that these parts with distinct symmetries do not mix under group
transformations. Indeed, one can calculate the transformed symmetric part under an arbitrary
group transformation and verify that it remains symmetric:

Sab
g∈G−→ S ′

ab
= [R(g)]ac[R(g)]bd S

cd

= [R(g)]ac[R(g)]bd S
dc

= [R(g)]bd[R(g)]acS
dc = S ′

ba
.

(51)

Similarly, one can verify that

Aab
g∈G−→ A′

ab
= [R(g)]ac[R(g)]bdA

cd

= [R(g)]ac[R(g)]bd (−Adc)
= −[R(g)]bd[R(g)]acA

dc = −A′ba ,

(52)

so that the transformed antisymmetric part remains antisymmetric. Symmetric parts and anti-
symmetric parts are never mixed by group transformations, so the tensor representation iden-
tified by the tensor T ab is reducible. In a compact notation, we can denote the representation
that transforms the tensor T ab ∼ T as RT (g) so that

T ′ = RT (g)T . (53)

This representation is reducible:(
S ′

A′

)
=

(
RS(g) 0

0 RA(g)

)
︸ ︷︷ ︸

RT (g)

(
S
A

)
(54)

where T ∼
(
S
A

)
indicates the decomposition into symmetric and antisymmetric parts.

These parts may be further reduced if there are other invariant operations (such as the
possibility of taking scalar products as in (47)). For the simpler representations, it is easy to
study any further reducibility on a case-by-case basis.

Note that the Kronecker delta tensors δab and δȧḃ, which are the matrix elements of the
identity operators, remain invariant under group transformations if their indices are transformed
according to their nature. For example,

δab
g∈G−→ (δ′)ab = [R(g)]ac[R(g)−1T ]b

dδcd = [R(g)]ac[R(g)−1T ]b
c = [R(g)]ac[R(g)−1]cb =

= [R(g)R(g)−1]ab = δab . (55)

These are called invariant tensors. In contrast, δab does not identify any invariant tensor
(unless there are special relations between the various types of indices): if we define a tensor
that coincides with δab in a “reference frame,” under a group transformation (a “change of
reference frame”) the components of the tensor change value.

The existence and number of invariant tensors depend on the group G under considera-
tion. For example, the group SO(N) admits an invariant tensor defined by the completely
antisymmetric symbol εa1...an , where the indices are those of the fundamental representation.
This follows from the fact that the matrices of the group SO(N) have determinant 1. Similarly,
the group SU(N) admit the invariant tensors given by the completely antisymmetric symbols
εa1...an and εa1...an .

12



4.3 Representations of SO(N)

We describe here the simplest representations of SO(N), the special orthogonal group of real
N ×N matrices

SO(N) = {real N ×N matrices R | RTR = 1, detR = 1} . (56)

This is the group that leaves invariant the scalar product of vectors ~v, ~w ∈ RN , defined by
~v · ~w = δabv

awb, where the metric δab is recognized to be an invariant tensor (indices up and
down are equivalent for SO(N), so that δab = δab, and we already know that δab is an invariant
tensor). More directly, using matrix notation, we compute

v′ = Rv , w′ = Rw

~v · ~w = vTw → v′Tw′ = (Rv)TRw = vTRTRw = vTw .
(57)

Equivalently, using components

v′a = Rabvb , w′a = Rabwb

~v · ~w = vawa → v′aw
′
a = RabvbRacwc = vbRabRacwc = vb R

T
baRac︸ ︷︷ ︸
δbc

wc = vbwb = vawa

(58)

where we used again the fact that upper and lower indices are equivalent.
Thus, the defining representation (also called vector representation) acts on the vectors va.

As already described, the four basic representations are all equivalent as va ∼ va ∼ vȧ ∼ vȧ.
We denote this representation by N , i.e., by its dimension. The tensor product N⊗N identifies
the tensor representation that acts on tensors with two indices T ab and thus corresponds to
a representation of dimension N2. It is a reducible representation. To extract the irreducible
representations that it contains, we proceed as follows. We have already seen that the tensor
T ab can be separated into the symmetric part Sab (of dimension N(N+1)

2
) and the antisymmetric

part Aab (of dimension N(N−1)
2

). The symmetric part is still reducible because one can construct
a scalar (an invariant under the group transformations) by taking its trace:

S ≡ δabS
ab = Saa . (59)

It is easily seen that this is a scalar, as we already know that the contraction of an upper index
with a lower index produces a scalar:

S
g∈SO(N)−→ S ′ = S (60)

It identifies a trivial one-dimensional representation: Rscal(g) = 1. We can separate the trace
from the symmetric tensor Sab in the following way:

Sab = Sab − 1

N
δabS︸ ︷︷ ︸

Ŝab

+
1

N
δabS (61)

where we have defined the traceless symmetric tensor Ŝab (which satisfies Ŝaa = 0). Thus,
collecting all pieces, we have succeeded in separating the tensor T ab into its irreducible parts:

T ab =
1

N
δabS + Aab + Ŝab (62)
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They transform independently without ever mixing. Indicating the irreducible representations
with their respective dimensions, the above translates into the following expression:

N ⊗N = 1⊕ N(N − 1)

2
⊕
(
N(N + 1)

2
− 1

)
. (63)

It can be shown that there are no further reductions. The representation acting on antisym-
metric tensors with two indices Aab, the N(N−1)

2
, is also called the adjoint representation: its

dimension corresponds to the number of independent parameters of the group, given by the
angles describing the rotations in the a–b planes (with a 6= b).

In summary, for SO(N), we understand that there exist the following irreducible represen-
tations, indicated by their dimension:

1, N,
N(N − 1)

2
,

(
N(N + 1)

2
− 1

)
, . . . (64)

where 1 is the trivial representation (the scalar), N is the vector representation (also called

defining or fundamental), the N(N−1)
2

is the adjoint representation, the N(N+1)
2
−1 is the traceless

symmetric representation, etc.
In the specific case of SO(3), the formula in (63) reduces to:

3⊗ 3 = 1⊕ 3⊕ 5 . (65)

We see that in this special case, the adjoint representation coincides with the vector represen-
tation: indeed the dimensions are the same, and a full proof is simple to produce. Translated
into the language of quantum mechanics, this formula tells us that combining spin 1 (the vector
representation “3”) with another spin 1 yields spin 0 (the “1” representation, the scalar), spin
1 (again the “3” representation), and spin 2 (the “5” representation). Equivalently, defining
the quantum numbers l by setting n = 2l + 1 for n = 1, 3, 5, this relation can be written as:

(l = 1)⊗ (l = 1) = (l = 0)⊕ (l = 1)⊕ (l = 2)

which is the formula for adding quantum angular momentums. In quantum mechanics, orbital
angular momentum is quantized and is fixed by an integer quantum number l = 0, 1, 2, 3, . . .,
indicating that the projection of the angular momentum along a fixed axis can only take 2l+ 1
values. The (2l + 1)-representation is the one acting on the traceless, symmetric tensor with l
indices, Ŝa1,a2,...,al . The electron orbiting the nucleus can have angular momentum with l = 0 (S
orbital), angular momentum with l = 1 (P orbital), angular momentum with l = 2 (D orbital),
etc. Continuing with the study of angular momentum in quantum mechanics, one discovers
that intrinsic angular momenta (spins) are characterized by integer and half-integer values of
the quantum number, i.e. s = 0, 1

2
, 1, 3

2
, 2, . . .. The rules for composing angular momentum

in quantum mechanics correspond precisely to the decomposition of a tensor product into
irreducible representations mentioned above. Strictly speaking, the representations with half-
integer spin (spinors) are not truly representations of the SO(N) group, as they are double
valued (a rotation of 2π is not the identity but minus the identity). They are representations
of the covering group as well as of the SO(N) Lie algebra, a concept that we shall introduce
shortly.

In the case of SO(4), or the Lorentz group SO(3, 1), the formula (63) reduces to:

4⊗ 4 = 1⊕ 6⊕ 9 . (66)
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The 6-dimensional representation is the adjoint representation. It is the one that acts on
the electromagnetic field, which indeed has six independent components that are mixed under
Lorentz transformations. The electromagnetic field is described by an antisymmetric tensor
with two indices F µν . In the case of the Lorentz group, upper and lower indices are equivalent,
and the Minkowski metric is used to pass from one to the other (the metric describes the
similarity transformation that connects the two representations).

4.4 Representations of SU(N)

Consider now SU(N), the special unitary group of N ×N matrices

SU(N) = {complex N ×N matrices U | U †U = 1, detU = 1} . (67)

This is the group that preserves the inner product of vectors ~v, ~w ∈ CN defined by ~v∗ · ~w =
v∗aw

a = δabv
∗
aw

b, where ∗ denotes the complex conjugate. The metric δab is an invariant tensor
(see eq. (55)).

Starting from the fundamental representation, N (corresponding to the vectors va), we
immediately obtain another representation, the complex conjugate representation (transforming
the vectors vȧ ∼ va). It is denoted by N .

Now, let’s find other irreducible representations by considering the tensor product

N ⊗N =
N(N + 1)

2
⊕ N(N − 1)

2
(68)

which corresponds to the decomposition of the tensor T ab into its symmetric and antisymmetric
parts, T ab = Sab + Aab. This decomposition is exhaustive (note that it is not possible to take
traces to form scalars on these tensors because δab is not an invariant tensor for SU(N): to see
this, simply transform the tensor δab as dictated by the structure of its indices and see that it is
not invariant). Hence, we have discovered the existence of two new representations and know
their dimensions.

Consider now
N ⊗N = 1⊕ (N2 − 1) (69)

which corresponds to the decomposition of the tensor T ab into its trace part (the scalar) and its
traceless part. This is possible because we know that contracting a raised index with a lowered
index produces a scalar. In formulas, this separation is written as

T ab =
1

N
δabT + T̂ ab (70)

where T ≡ T aa and T̂ ab ≡ T ab − 1
N
δabT . Note that the tensor δab is an invariant tensor (it

corresponds to the metric of the complex vector space CN). Thus, we have discovered the
existence of the representation of dimension N2 − 1, the so-called adjoint representation.

Other invariant tensors of SU(N) are the completely antisymmetric tensors with N indices,
εa1a2...aN and εa1a2...aN (this can be demonstrated using the fact that the group matrices have
determinants equal to one). They can be used to study the reduction (or equivalence) of other
tensorial representations.

In summary, for SU(N), we have seen that there exist the following irreducible representa-
tions:

1, N, N̄ ,N2 − 1,
N(N − 1)

2
,
N(N + 1)

2
,
N(N − 1)

2
,
N(N + 1)

2
, (71)
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where 1 is the trivial representation (the scalar), N is the fundamental representation (or
defining), N̄ is the antifundamental (complex conjugate of the fundamental), and N2− 1 is the
adjoint representation, which is real, etc.

Let’s make this explicit for the case of SU(2). We have

2⊗ 2 = 1⊕ 3 , 2⊗ 2̄ = 1⊕ 3 (72)

These formulas suggest that perhaps 2 and 2̄ are equivalent representations, i.e. 2̄ ∼ 2. This is
indeed the case: using the invariant tensor εab we may relate the two representations by setting
wa = εabv

b, then under a group transformation we see that

w′a = ε′abv
′b = εabv

′b (73)

which indicates that, up to a change of basis given by the εab tensor, the vectors va and wa
transform in the same way. Here, we used the fact that εab is an invariant tensor. The explicit
proof is as follows: if R ∈ SU(2) then

ε′ab = Ra
cR

b
dε
cd = kεab (74)

for some coefficient k. This follows from the fact that an antisymmetric 2× 2 matrix has only
one independent component. To determine k, we calculate

ε′12 = R1
cR

2
dε
cd = R1

1R
2

2 −R1
2R

2
1 = detR = 1 . (75)

So k = 1 and ε′ab = εab.
Translating (72) into the language of quantum mechanics, it means that combining spin 1

2

(the representation “2”) with itself yields spin 0 (the representation “1”, the scalar) and spin
1 (the representation “3”). Indeed, defining j = 2s + 1 for s = 0, 1

2
, 1, this relation can be

equivalently written as

(j = 1
2
)⊗ (j = 1

2
) = (j = 0)⊕ (j = 1) .

The group SU(2) describes space rotations, including the possibility of having half-integer spins
associated with fermionic particles. In mathematical terms, one says that the group SU(2) is
the universal cover of the group SO(3).

Now, let us make explicit also the case of SU(3). It has physical applications both as
the flavor symmetry group SU(3)flavor which mixes the three “flavors” of quarks (up, down,
strange), and as color symmetry group SU(3)color which mixes the three colors of each quark
(conventionally red, green, blue). We have

3⊗ 3̄ = 1⊕ 8 (76)

In SU(3)flavor, 3 and 3̄ correspond to the up, down, and strange quarks and their antiquarks

qa =

 u
d
s

 ∼ 3 , q̄a =

 ū
d̄
s̄

 ∼ 3̄ . (77)

Flavor symmetry means that we can redefine flavors through SU(3) group transformations
without changing anything in the description of physical phenomena. In the static quark model
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of mesons, which are hadrons composed of bound states of quark-antiquark (qq̄), the symmetry
implies that only singlets or octets of flavor can emerge. The mesonic octet containing the
pions is the main example: there are eight mesons with identical properties, and one could not
distinguish them from each other if the symmetry were exact (same masses, same spin, etc.).
In reality, the symmetry is only approximate, so there are some small differences (e.g., they
have slightly different mass, also they have different charges and electromagnetism violates this
symmetry).

Another application concerns the color of quarks and is associated with another SU(3)
group, called SU(3)color. Each quark flavor has three colors (red, green, blue); for example, for
the up quark we can group them in a vector

ua =

 ured

ugreen

ublue

 ∼ 3 . (78)

Color symmetry means that we can redefine colors through SU(3) group transformations with-
out changing anything (color symmetry is exact). The information contained in the relation
(76) is that it is possible to combine the colors of a quark with the colors of an antiquark (the
anticolors) to form a colorless state (the scalar) or states with eight possible different color com-
binations: indeed, quark/antiquark of the same flavor can combine into a photon (the scalar,
or singlet, of color) or into a gluon (there are eight different possibilities, so that one says that
the gluons form an octet of color).

Moreover,
3⊗ 3 = 6⊕ 3̄ . (79)

The possible ambiguity in understanding whether the tensor Aab, which has three components,
corresponds to 3 or 3̄ is resolved in favor of the latter option considering that Aab ∼ Aabεabc ∼ Vc
(since εabc is an invariant tensor for SU(3)). This relation in SU(3)color tells us that combining
the colors of two quarks is not possible to obtain a colorless state (the scalar).

With a bit more effort, one can also deduce (considering the symmetries of the tensor T abc)
that

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 (80)

where the 1 corresponds to the completely antisymmetric part of T abc, the 10 to the completely
symmetric part of T abc, and the two 8s to parts of the tensor with mixed symmetry. In
applications in the static quark model of baryons, hadrons composed of bound states of three
quarks (qqq), the symmetry SU(3)flavor predicts that families of similar particles can only exist
with 1, 8, or 10 components (not all need to exist: some combinations might not appear for other
reasons). There are several octets (the 8), like the eight baryons which have similar properties
concerning the strong interactions (a particular octet contains the proton and the neutron).
Their antiparticles also form octets. There is also a famous decuplet of baryons, whose wave
functions are symmetric in the flavors of the three constituent quarks. These wave functions
transform into the 10 of SU(3) under flavor symmetry transformations. The corresponding
anti-baryons group into 10. Applying the relation (80) to color, the fact that the 1 appears on
the right side is interpreted as the possibility of combining the colors of three quarks to form
a colorless state (e.g. the proton is made of three quarks; in general mesons and baryons must
be color scalars due to a dynamical process called color confinement).
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4.5 Representations of U(1)

Let us also consider the case of representations of the group U(1), which also plays a significant
role in physics. The group U(1) = {eiθ | θ ∈ [0, 2π]} is the group of phases. It can be shown that
all its irreducible unitary representations are one-dimensional complex representations which
are characterized by an integer number, positive or negative, called the “charge”. The defining
representation represents an element of the group U(1) with the phase eiθ which “rotates”
naturally a complex one-dimensional vector v (v ∈ C, where C denotes the field of complex
numbers, which we interpret here as a one-dimensional complex vector space)

v
g∈U(1)−→ v′ = eiθv , v ∈ C . (81)

Thus, the vector space of the defining representation is one-dimensional and complex, and the
matrices of the representation are complex 1× 1 matrices (i.e., complex numbers).

Objects that transform as tensor products of the defining representation

v(q) ∼ vv · · · v︸ ︷︷ ︸
q times

= vq (82)

with q an integer give rise to the representation of charge q

v(q)
g∈U(1)−→ v′(q) = eiqθv(q) . (83)

The number q can also be negative, as seen by tensoring the antifundamental representation
acting on v̄.

The tensor product of a representation with charge q1 with a representation with charge
q2 yields the representation with charge q1 + q2. The symmetry group U(1) is used in physics
when there are quantized additive quantum numbers. Since all its representations are one-
dimensional, to distinguish the various inequivalent representations, one indicates the charge q
of the representation rather than its dimension.

What has been analyzed so far also allows us to interpret the possible charges (general-
ized charges, such as electric charge, color charge, etc.) of particles and associate them with
a representation of the corresponding symmetry group. For example, the Standard Model of
elementary particles contains the symmetry group SU(3) × SU(2) × U(1) (called the gauge
symmetry group). The fermions of the Standard Model have generalized charges under these
groups. Let us describe them. We can indicate these charges using a notation of the form
(SU(3), SU(2))U(1), where for the non-abelian groups we specify the representation by its
corresponding dimension, while for the abelian part we use the U(1) charge, called hyper-
charge. Anticipating that fermions can be decomposed into right-handed (R) and left-handed
(L) fermions, with possibly different charges, one has so far discovered in Nature elementary
fermions with the following charges(

νeL
eL

)
νeR eR

(
uL
dL

)
uR dR(

νµL
µL

)
νµR µR

(
cL
sL

)
cR sR(

ντL
τL

)
ντR τR

(
tL
bL

)
tR bR

(1, 2)− 1
2

(1, 1)0 (1, 1)−1 (3, 2) 1
6

(3, 1) 2
3

(3, 1)− 1
3

(84)
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The group SU(3) is called the color group, and the quarks transform in the fundamental
representation, the 3, and thus have three “colors”, while the corresponding antiparticles, the
antiquarks, transform in the complex conjugate representation, the 3̄, and thus have three “an-
ticolors”. Leptons do not feel the strong force and, therefore, are singlets under the color group.
The group SU(2) is called the weak isospin group, and the SU(2) doublets have been written
above in the form of column vectors: they transform in the two-dimensional representation,
the 2, and thus have weak isospin I = 1

2
, with the third component I3 = 1

2
for the upper

element of the vector and I3 = −1
2

for the lower one. Note that the 2 is equivalent to the 2̄,
both identifying the same representation with weak isospin equal to 1

2
. U(1) is the hypercharge

group. If we denote by Y the hypercharge of a particle, the corresponding electric charge Q
is given by Q = I3 + Y , where I3 denotes the third component of the weak isospin. From the
above table, one may extract which are the electric charges of these elementary particles.

5 Lie Groups and Lie Algebras

A Lie group is, by definition, a group whose elements depend continuously on some parameters.
By studying the infinitesimal group transformations, i.e. those transformations that differ
slightly from the identity, one obtains the so-called Lie algebra of the group, an algebra that
summarizes essential information about the group. In particular, the Lie algebra captures the
non-abelian structure of the group. To introduce these topics, we first study some of the simplest
yet most commonly used groups in physics and then list general properties and definitions.

5.1 SO(2)

Consider the familiar group of rotations in two-dimensional Euclidean space, the group SO(2)
of real orthogonal 2 × 2 matrices with determinant equal to 1. These matrices generate the
transformations of a vector

~x −→ ~x ′ = R~x (85)

or in tensor notation xi → x′i = Ri
jx
j with i, j = 1, 2. This is the defining (or vector)

representation. The rotations that mix the two components of the vector ~x = (x, y) = (x1, x2)
depend on an angle θ and can be written as

R(θ) =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
θ�1−→

(
1 θ
−θ 1

)
= 1 + θ

(
0 1
−1 0

)
︸ ︷︷ ︸

iT

+ · · · (86)

where the matrix T is the operator that “generates” the infinitesimal part of the transformation

T =

(
0 −i
i 0

)
. (87)

The imaginary unit i in (86) is conventional but allows us to present the generator T as a
Hermitian matrix (whose eigenvalues are real).

The group is abelian; its elements commute, R(θ1)R(θ2) = R(θ2)R(θ1), and obviously

[T, T ] = 0 (88)
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where [·, ·] denotes the commutator ([A,B] = AB−BA). This is called the Lie algebra of SO(2).
In general, the Lie algebra of a group is generated by the commutators of its infinitesimal
generators.

Finite transformations can be obtained by iterating infinitesimal transformations. If the
parameter θ is not infinitesimal, consider θ

n
with n large enough to make it infinitesimal. Then,

one can write[
R(θ)

]
≈
[
R
(
θ
n

)]n
≈
(

1 + i θ
n
T
)n n→∞−→ eiθT = 1 cos(θ) + iT sin(θ) (89)

which reproduces the finite transformation in (86). The notation eiθT , which contains the
infinitesimal generator T and the continuous Lie parameter θ of the group, is the exponential
representation of the elements of the group SO(2). It generalizes to arbitrary Lie groups.

Here, we have obtained the Lie algebra of the group SO(2) by considering the defining
representation of SO(2), which is enough to recognize the abstract SO(2) Lie algebra. Then,
one can study the various representations of the SO(2) Lie algebra in terms of other matrices
and classify inequivalent representations.

Note that by defining the complex number z = x + iy, the SO(2) transformation of (x, y)
takes the form of U(1) a phase transformation

z′ = x′ + iy′ = (x cos(θ) + y sin(θ)) + i(−x sin(θ) + y cos(θ))

= (cos(θ)− i sin(θ))(x+ iy) = e−iθz .
(90)

The groups SO(2) and U(1) are equivalent, SO(2) ∼ U(1).

5.2 SO(3)

Consider now the group of rotations in three-dimensional space, the group SO(3) of real or-
thogonal 3× 3 matrices with determinant equal to 1. These matrices generate transformations
of a three-dimensional vector ~x→ ~x ′ = R~x.

Consider the rotations around the three Cartesian axes with coordinates (x, y, z) = (x1, x2, x3)

Rx(θx) =

 1 0 0
0 cos(θx) sin(θx)
0 − sin(θx) cos(θx)

 θx�1−→ 1 + θx

 0 0 0
0 0 1
0 −1 0


︸ ︷︷ ︸

iT 1

+ · · · (91)

Ry(θy) =

 cos(θy) 0 − sin(θy)
0 1 0

sin(θy) 0 cos(θy)

 θy�1−→ 1 + θy

 0 0 −1
0 0 0
1 0 0


︸ ︷︷ ︸

iT 2

+ · · · (92)

Rz(θz) =

 cos(θz) sin(θz) 0
− sin(θz) cos(θz) 0

0 0 1

 θz�1−→ 1 + θz

 0 1 0
−1 0 0
0 0 0


︸ ︷︷ ︸

iT 3

+ · · · (93)

so that the generators T i of the infinitesimal transformations are given by

T 1 =

 0 0 0
0 0 −i
0 i 0

 T 2 =

 0 0 i
0 0 0
−i 0 0

 T 3 =

 0 −i 0
i 0 0
0 0 0

 . (94)
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The corresponding Lie algebra is easily computed by calculating the commutators of the ma-
trices just identified

[T i, T j] = iεijkT k . (95)

The right-hand side is not zero, indicating that the group is non-abelian (the group elements
do not commute). The constants εijk are called the structure constants of the SO(3) group
because they encode the non-abelian structure of the group. A finite element of the group can
be parameterized in exponential form as

R(~θ) = ei
~θ·~T = eiθiT

i

(96)

where θi are the independent parameters of the group (a rotation of angle θ =
√
~θ · ~θ around

the axis of the unit vector θ̂ =
~θ
θ
).

To understand the role of the Lie algebra, let us study the product

R(α)R(β)R−1(α)R(β) (97)

that would be the identity for an abelian group. For infinitesimal parameters and working at
the linear order in both α and β, one finds

R(α)R(β)R−1(α)R(β) = 1 + αiβj[T
i, T j] + · · · (98)

which is nonvanishing for the non-abelian group SO(3): the Lie algebra captures the non-
commutative structure of the Lie group. In addition, one understands that the result must
correspond to an infinitesimal group transformation, just like the left-hand side, so that the
commutator [T i, T j] must be proportional to a generator, as indeed verified in (95).

We have obtained the Lie algebra using the defining representation, and now we can consider
it as the abstract Lie algebra of the group SO(3) and study its different irreducible represen-
tations, as done for the representations of the group. From the representations of the group
studied previously, one obtains the corresponding representations of the associated Lie alge-
bra. Conversely, exponentiating the matrices of a representation of the Lie algebra yields finite
transformations that provide a representation of the group5.

Let us comment on the SO(3) Lie algebra and relate it to known topics studied in quantum
mechanics. In equation (95), we recognize the algebra of the quantum angular momentum
operator. Renaming T i → Li, we recognize the familiar algebra of the angular momentum (in
units of ~ = 1)

[Li, Lj] = iεijkLk . (99)

The study of its irreducible unitary representations is solved explicitly using the methods of
quantum mechanics: the known result is that these irreducible representations are those given
by the spherical harmonics |l,m〉 ∼ Ylm, which for fixed l form a basis of the spin l representa-
tion. It is (2l + 1)-dimensional, as for fixed l the possible values of m are 2l + 1:

Y ′lm = [R(l)(θ)]lm
ln Yln , l fixed, m, n ∈ [−l,−l + 1, ..., 0, ..., l − 1, l] . (100)

In the case of spinorial representations (i.e., with half-integer spin, i.e. with l → j and j half-
integer), a rotation by 2π (which for SO(3) coincides with the identity) is represented by the

5Except for possible topological obstructions that might prevent the representation from being truly single-
valued. This situation is exemplified by the spinor representations of SO(3), which, as we will see later, are
true (i.e., single-valued) representations of the SU(2) group only.
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matrix −1, and thus we speak of a 2-valued representation (one needs to rotate by another 2π to
get back to the identity). As we will see, these spinorial representations are true representations
of the SU(2) group, which has the same Lie algebra as SO(3) and therefore has the same local
structure but different global properties.

To appreciate future developments (such as the Lie algebras of SO(N) and SO(N,M)),
let’s rewrite the matrices identifying the generators in the vector representation (94) and the
corresponding Lie algebra in (95) in an alternative way. We can rename the generator T 1 as
T 23, as it generates a rotation in the 2-3 plane, and so on: T 2 ≡ T 31, T 3 ≡ T 12. The matrix
elements in (94) can be written as

(T 1)ij ≡ (T 23)ij = −i(δ2iδ3
j − δ3iδ2

j) (101)

and similarly for T 31 and T 12. Thus, the general expression obtained is

(T kl)ij = −i(δkiδlj − δliδkj) (102)

which can be used to recalculate the Lie algebra of SO(3). Rewritten on this basis, the Lie
algebra (95) becomes

[T kl, Tmn] = −iδlmT kn + iδkmT ln + iδlnT km − iδknT lm . (103)

Note the presence of the Euclidean (inverse) metric δij in this relation. Written in this form, the
Lie algebra is valid for the generic group SO(N), provided that the indices range from 1 to N .
Moreover, by replacing the metric δij with a Minkowski metric ηij, appropriate for a spacetime
with N spatial and M temporal dimensions, one obtains the Lie algebra of SO(N,M).

5.3 U(1)

Consider the group U(1) = {eiθ | θ ∈ [0, 2π]}, the group of phases defined via its defining
representation. For infinitesimal transformations

eiθ = 1 + iθ + · · · (104)

the infinitesimal generator is given by T = 1 (which we can think of as a 1× 1 matrix), which
produces the Abelian Lie algebra of the U(1) group given by the commutator

[T, T ] = 0 . (105)

In the charge q representation, where the element eiθ is represented by eiqθ, the infinitesimal
generator is represented by T = q and satisfies the same Lie algebra (105). Therefore, we can
think of the Lie algebra [T, T ] = 0 as the abstract Lie algebra corresponding to the U(1) group,
which is represented by different matrices in different representations. Since the irreducible rep-
resentations of the U(1) group are all one-dimensional, all these matrices are 1×1 matrices and
thus are simply numbers. In the charge q representation, the generator of U(1) is represented
by T = q. It is also common to use the notation Q (which often denotes a charge) instead of
T for the generator of the U(1) group. The groups U(1) and SO(2) identify the same Abelian
Lie group, as already described.
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5.4 SU(2)

Let’s now analyze the group SU(2), the group of 2× 2 unitary matrices with unit determinant:

SU(2) = {U complex matrices 2× 2 | U † = U−1, detU = 1} . (106)

We can write the matrices that differ infinitesimally from the identity matrix as

U = 1 + iT T ij � 1 . (107)

Now, the requirement that U † = 1− iT † coincides with U−1 = 1− iT implies that the matrices
T must be Hermitian:

T † = T (108)

while the requirement for unit determinant, detU = 1 + i trT = 1, implies that these matrices
must be traceless:

trT = 0 . (109)

A basis of Hermitian traceless 2× 2 matrices is given by the Pauli matrices:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(110)

so we can express an arbitrary matrix T as a linear combination of the σa:

T = θa
σa

2
≡ θaT

a a = 1, 2, 3 . (111)

The normalization has been chosen to satisfy

Tr(T aT b) =
1

2
δab . (112)

With this normalization, the infinitesimal generators T a = σa

2
give rise to the following SU(2)

Lie algebra
[T a, T b] = iεabcT c (113)

which is recognized to coincide with the Lie algebra of SO(3). This shows that locally they
are similar (they have the same structure constants), although globally there are differences:
using the language of differential geometry, we can say that the group SU(2) is a double cover
of the group SO(3). This difference is seen explicitly in the defining representation of SU(2)
(the spin-1

2
or 2 representation). A finite rotation is obtained by exponentiating infinitesimal

transformations to make them finite:

U(θa) = exp(iθa
σa

2
) . (114)

In particular, a finite rotation around the z-axis is obtained by choosing θ3 = θ and θ1 = θ2 = 0,
to find a matrix U3(θ) given by

U3(θ) = eiθ
σ3

2 = 1 + iθ
σ3

2
+

1

2!

(
iθ
σ3

2

)2

+
1

3!

(
iθ
σ3

2

)3

+
1

4!

(
iθ
σ3

2

)4

+ · · ·

= 1 + i
(θ

2

)
σ3 − 1

2!

(θ
2

)2

1− i 1

3!

(θ
2

)3

σ3 +
1

4!

(θ
2

)4

1

= 1
(

1− 1

2!

(θ
2

)2

+
1

4!

(θ
2

)4

+ · · ·
)

+ iσ3
(θ

2
− 1

3!

(θ
2

)3

+ · · ·
)

= 1 cos
(θ

2

)
+ iσ3 sin

(θ
2

)
=
(
ei
θ
2 0

0 e−i
θ
2

)
.

(115)
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Setting θ = 2π gives the transformation

U3(θ = 2π) = −1 (116)

which does not coincide with the identity in SU(2). The identity transformation is obtained
only for θ = 4π. As known from quantum mechanics, all irreducible unitary representations of
SU(2) are characterized by a quantum number j that can be either an integer or a half-integer.
They are of dimension 2j + 1.

Historical Note: Pauli introduced the matrices in (110) to describe the electron’s spin,

defining the spin operator ~S = ~
2
~σ, which acts on a two-component wave function (spinor).

5.5 SU(3)

The same analysis performed to extract the infinitesimal generators of SU(2) applies also to the
general SU(N) group, whose generators are then seen to be traceless, hermitian, N×N matrices.
There are N2−1 of such matrices, so that there are N2−1 independent Lie parameters for the
group SU(N). In particular, the eight infinitesimal generators of SU(3) in the fundamental
representation are given by the Gell-Mann matrices λa, which form a basis of hermitian 3× 3
traceless matrices (generalizing the Pauli matrices σi for SU(2)):

T a =
λa

2
a = 1, . . . , 8 (117)

where

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 , (118)

λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .

These matrices are normalized so that

Tr(T aT b) =
1

2
δab (119)

just as was done for SU(2), see eq. (112). An arbitrary element of the SU(3) group in the
fundamental representation is thus described by 3× 3 matrices of the form U(θ) = exp(iθa

λa

2
),

where θa with a = 1, 2, . . . , 8 are the eight parameters of the group. By calculating the Lie
algebra, one finds the structure constants fabc that correspond the SU(3) group

[T a, T b] = ifabcT c (120)

They are totally antisymmetric and given by:

f 123 = 1

f 147 = −f 156 = f 246 = f 257 = f 345 = −f 367 =
1

2

f 458 = f 678 =

√
3

2

(121)
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while all other fabc not related to these by permuting indices are zero. As an exercise, try to
verify some of these numbers. This group has important applications in the description of color
associated with strong interactions and in the quark model that classifies the hadrons composed
of the three lightest flavors of quarks (up, down, strange).

5.6 General Case

We summarize for arbitrary Lie groups what was illustrated above through examples. A Lie
group is, by definition, a group of transformations that depend continuously on some param-
eters. By studying the infinitesimal transformations of the group, i.e., transformations that
differ only slightly from the identity, we recognize the generators, operators that “generate”
the infinitesimal transformations. They identify the so-called Lie algebra of the group, which
summarizes information about the group.

In general, an element g(θ) of a Lie group G (or, more precisely, of the component connected
to the identity) can be parametrized in the following way:

g(θ) = eiθaT
a ∈ G a = 1, . . . , dim G (122)

where the parameters θa are real numbers that parametrize the various elements of the group.
They are chosen so that for θa = 0 one gets the identity g = 1. The operators T a are the
generators of the group. Considering the group as a group of N ×N matrices for some N (for
example, the defining representation), the generators are also N ×N matrices. They generate
infinitesimal transformations when θa � 1. Simply expand the exponential function in a Taylor
series and keep the lowest order terms:

g(θ) = 1 + iθaT
a + · · · . (123)

By studying the relations that capture the composition properties of the group using infinites-
imal transformations (which are generically non-commutative), one obtains the Lie algebra of
the group G:

[T a, T b] = ifabcT
c . (124)

The constants fabc are called structure constants of the group and characterize it. Groups with
the same Lie algebra may only differ in their topology but are locally similar. It is useful to
mention the Jacobi identities:

fabdf
dc
e + f bcdf

da
e + f cadf

db
e = 0 (125)

which are quadratic relations satisfied by the structure constants and emerge as a consequence
of the operator identities:

[[T a, T b], T c] + [[T b, T c], T a] + [[T c, T a], T b] = 0 . (126)

The structure constants can be used to define the adjoint representation T a(A) of the Lie algebra,
given by the formula:

(T a(A))
b
c = −ifabc . (127)

It is verified to be a representation of the Lie algebra thanks to the Jacobi identities. It is a
real representation because the structure constants are real numbers, and it a representation
of dimensions equal to the dimensions of the group, since the indices a, b, c = 1, 2, . . . , dim G.
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Finally, it is useful to mention the Baker-Campbell-Hausdorff formula for the product of
exponentials of two linear operators A and B:

eAeB = eA+B+ 1
2

[A,B]+ 1
12

[A,[A,B]]− 1
12

[B,[A,B]]+··· (128)

where the dots indicate higher-order terms, always expressible in terms of commutators. This
formula shows that the knowledge of the Lie algebra is sufficient to reconstruct the (generally
non-commutative) product of the elements of the corresponding Lie group.

To summarize, let us list and review some of the main definitions and properties of Lie
algebras:

(i) g = exp(iθaT
a) ∈ G a = 1, . . . , dim G

(ii) [T a, T b] = ifabcT
c

(iii) tr(T aT b) = 1
2
γab (generators in the fundamental representation)

(iv) [[T a, T b], T c] + [[T b, T c], T a] + [[T c, T a], T b] = 0 ⇒ fabdf
dc
e + f bcdf

da
e + f cadf

db
e = 0

(v) fabc = fabdγ
dc (completely antisymmetric tensor)

Point (i) describes the exponential parametrization of an arbitrary element of the group that
is connected to the identity. The index a takes as many values as the dimensions of the group.
An element of the group is parametrized by the parameters θa with a = 1, . . . , dim G.
Point (ii) corresponds to the Lie algebra satisfied by the infinitesimal generators T a. The con-
stants fabc are called structure constants and characterize the group G. They are antisymmetric
on indices a and b.
Point (iii) identifies (the inverse of) a metric γab called the “Killing metric”. This metric is
positive-definite only for compact and simple Lie groups, such as SU(N) or SO(N). Being
positive, it is often normalized to the Kronecker delta: γab = δab.
Point (iv) amounts to the so-called “Jacobi identities” satisfied by the structure constants. They
can be used to construct the adjoint representation of the Lie algebra. Denoting by (T a(A))

b
c the

matrix elements of the generators of the adjoint representation T a(A), we have (T a(A))
b
c = −ifabc.

The Jacobi identities imply that this is a representation. It is real and of dimensions equal to
the dimensions of the group since the indices a, b, c = 1, 2, . . . , dim G. By exponentiation, it
gives rise to a representation of the group.
In point (v), the Killing metric is used to raise an index of the structure constants. Then, fabc

are completely antisymmetric in all indices: antisymmetry in the indices a and b is obvious from
(ii), while antisymmetry in the indices b and c is deduced by taking the trace of the Jacobi
identities in (iv) and using (ii) and (iii).

Finally, we conclude with the statement of a theorem which we shall not prove: The unitary
irreducible representations of compact groups are finite-dimensional, while the unitary repre-
sentations of non-compact groups must be infinite-dimensional.

Thus, compact groups such as SO(N) and SU(N) have unitary finite-dimensional irreps.
Non-compact groups, such as the Lorentz group SO(3, 1) and the Poincaré group ISO(3, 1),
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have unitary representations that must be infinite-dimensional. For applications in relativistic
field theory, it is useful to have some knowledge of:

(i) the finite-dimensional representations of the Lorentz group. They are not unitary and are
used to label the quantum fields that define a given relativistic QFT,

(ii) the unitary representations of the Poincaré group, which are infinite-dimensional and are
realized in the Hilbert space of quantum field theories via unitary operators.

These points are very briefly commented upon at the very end of the next section.

6 Special relativity, the Lorentz group, and representa-

tions

Let us review the main points of special relativity, keeping in mind group theory applied to the
Lorentz group SO(3, 1).

The standard Lorentz transformation that relates the spacetime coordinates of two inertial
frames in relative motion with constant velocity v along the x axis are given by

ct′

x′

y′

z′

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1




ct
x
y
z

 (129)

where β ≡ v
c

and γ ≡ 1√
1−β2

= 1√
1− v2

c2

. Taking the relative velocity v to be positive, we see

that 0 ≤ β < 1 and 1 ≤ γ <∞. Denoting by x the column 4-vector with components xµ

x =


ct
x
y
z

 =


x0

x1

x2

x3

 → xµ , (130)

we write more compactly the Lorentz transformation in the equivalent forms as

x′ = Λx , x′µ = Λµ
νx

ν . (131)

This transformation is seen to leave invariant the light cone at the origin. More generally, it
leaves invariant the modulus square of the 4-vector xµ, which is defined in the following way

s2 = −c2t2 + x2 + y2 + z2 =
(
ct, x, y, z

)
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



ct
x
y
z


= xTη x = ηµνx

µxν = xµxµ

(132)

where η is the Minkowski metric. It is also used to lower indices on vectors and tensors.
The general Lorentz group is defined as the group of linear transformations that leave

invariant the scalar s2

s2 = s′2 ⇒ xTη x = x′Tη x′ = xTΛTηΛx ⇒ ΛTηΛ = η
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or, equivalently, using components

ηµνx
µxν = ηµνx

′µx′ν = ηµν(Λ
µ
αx

α)(Λν
βx

β) = ηµνΛ
µ
αΛν

βx
αxβ = ηαβx

αxβ ⇒ ηµνΛ
µ
αΛν

β = ηαβ .

This invariance allows us to define the group of Lorentz transformations as

O(3, 1) = {real 4× 4 matrices Λ | ΛTηΛ = η} . (133)

This group contains the space-inversion (the parity transformation P ) as well as time-inversion
(the time reversal T ), which can be eliminated from the group by defining the proper or-
thochronous Lorentz group

SO+(3, 1) = {real 4× 4 matrices Λ | ΛTηΛ = η, det Λ = 1,Λ0
0 ≥ 1} (134)

also called the restricted Lorentz group. By relativistic invariance, one generically refers to an
invariance under the latter as parity and time reversal are usually treated separately.

Tensors are defined as usual for the Lorentz group. They are used to describe physical
quantities and their transformation properties under changes of inertial frames. An example is
the 4-momentum pµ

pµ = (p0, ~p) =

(
E

c
, ~p

)
=

(
mc√
1− v2

c2

,
m~v√
1− v2

c2

)
(135)

that transforms as a 4-vector and whose modulus square satisfies

pµpµ = −m2c2 . (136)

This last relation states that
E2 = ~p 2c2 +m2c4 . (137)

Similarly, the electric and magnetic fields ~E and ~B are recognized to be the components of an
antisymmetric tensor field F µν

F µν =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 =


0 Ex Ey Ez
−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

 . (138)

here written using Gaussian or Heaviside-Lorentz units. Under a Lorentz transformation, the
electromagnetic tensor transforms according to the tensor laws as

F ′µν = Λµ
αΛν

βF
αβ . (139)

From it, one can construct the scalar

F µνFµν = 2( ~B2 − ~E2) (140)

which is proportional to the free lagrangian of the electromagnetic field.
The space-time derivatives naturally form a vector with a lower index

∂µ ≡
∂

∂xµ
(141)
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so that ∂µx
µ = 4 is a scalar (∂′µx

′µ = ∂µx
µ = 4).

Then, the inhomogeneous Maxwell’s equations are written in a covariant form as

∂µF
µν = −1

c
Jν (142)

where Jµ = (J0, ~J) = (cρ, ~J) is the 4-vector charge-current density. The homogenous Maxwell’s
equations take instead the following covariant form

∂µFνλ + ∂νFλµ + ∂λFµν = 0 . (143)

6.1 Finite Dimensional Representations of the Lorentz Group

First, it is useful to derive the Lie algebra of the Lorentz group. For infinitesimal transforma-
tions, we can write

Λµ
ν = δµν + ωµν , |ωµν | � 1 (144)

and imposing the condition that defines Lorentz transformations (ηµν = ηαβΛα
µΛβ

ν), we obtain
that ωµν must satisfy the antisymmetric condition

ωµν = −ωνµ (145)

(indices are lowered as usual, ωµν = ηµλω
λ
ν). Thus, they contain six independent parameters

identified with the ωµν with fixed indices µ < ν.
Then, in matrix notation, we can re-write an arbitrary infinitesimal Lorentz transformation

by making explicit the infinitesimal parameters that multiply the corresponding generators

Λ = 1 +
i

2
ωαβM

αβ . (146)

The six matrices Mαβ with α < β are the independent generators of the Lorentz group. In the
defining representation (the “four-vector” representation), they are given by

(Mαβ)µν = −i(ηαµδβν − ηβµδαν ) (147)

so that eq. (146) reproduces eq. (144). For example, some of these generators can be written
explicitly as

M12 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 , M01 =


0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 (148)

where M12 generates infinitesimal rotations about the z-axis, while M01 generates a boost along
the x-axis.

Although it might seem tedious, it is straightforward to calculate the Lie algebra

[Mµν ,Mαβ] = −iηναMµβ + iηµαMνβ + iηνβMµα − iηµβMνα . (149)

This is also valid for any generic group SO(N,M) if one identifies ηµν with the corresponding
metric: in particular, to obtain SO(3) one sets ηµν → δij and defining J i = 1

2
εijkM jk one

recovers the form of the SO(3) Lie algebra given in eq. (95) with T i ≡ J i.
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Returning to the specific case of SO(3, 1), one can rewrite the algebra in a more useful form
that allows us to deduce immediately its finite-dimensional representations. Separating the
indices into time and space parts µ = (0, i), and defining the following basis for the generators
of the Lorentz group

J i =
1

2
εijkM jk , Ki = M i0 (150)

the Lie algebra (149) can be rewritten as

[J i, J j] = iεijkJk , [J i, Kj] = iεijkKk , [Ki, Kj] = −iεijkJk (151)

where the generators J i generate the spatial rotation subgroup SO(3). Finally, defining the
complex linear combinations

N i =
1

2
(J i − iKi) , N̄ i =

1

2
(J i + iKi) (152)

the algebra can be rewritten as

[N i, N j] = iεijkNk , [N̄ i, N̄ j] = iεijkN̄k , [N i, N̄ j] = 0 (153)

which shows that the algebra of SO(3, 1) is equivalent to that of SU(2)×SU(2), up to different
hermiticity relations (araising because SO(3, 1) is not compact, while SU(2) is). Since SO(3, 1)
reduces to two independent copies of SU(2), the well-known finite-dimensional representations
of the latter can be used to find the finite-dimensional representations of SO(3, 1): they are
classified by two integer or half-integer numbers (j1, j2) corresponding to the representations
of the two subgroups SU(2) generated by N i and N̄ i. Furthermore, recalling (152), the spin
operator corresponds to J i = N i + N̄ i, so that the highest spin content of the representation is
given by j = j1 + j2. These representations are finite-dimensional but are not unitary due to
the necessity of taking complex combinations of the generators in (152).

In quantum field theory, fields with these Lorentz representations are used to describe
particles with fixed spin, for example

(0, 0) −→ scalar φ

(
1

2
, 0) −→ left-handed Weyl fermion ψ

L
∼ ξa

(0,
1

2
) −→ right-handed Weyl fermion ψ

R
∼ ηȧ

(
1

2
, 0)⊕ (0,

1

2
) −→ Dirac fermion ψ ∼ ψα

(
1

2
,
1

2
) −→ spin-1 field Aµ .

(154)

Just as SO(3)→ SU(2) allows to view the spinorial representations of SO(3) as single-valued
representations of SU(2), a similar phenomenon happens for SO(3, 1) → SL(2, C): the Lie
algebras of SO(3, 1) and SL(2, C) coincide and the latter group is the covering group of the
former.

6.2 Unitary Representations of the Poincaré Group

The Poincaré group extends the Lorentz group with spacetime translations. It transforms the
position four-vector as follows

xµ → x′µ = Λµ
νx

ν + aµ (155)
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where Λµ
ν describes a Lorentz transformation and aµ a spacetime translation. This group is

sometimes referred to as the ISO(3, 1) group, the inhomogeneous special orthogonal group,
where the inhomogeneity refers to the translations.

The Lie algebra of the Poincaré group can be written as

[P µ, P ν ] = 0

[Mµν , P λ] = −iηνλP µ + iηµλP ν

[Mµν ,Mαβ] = −iηναMµβ + iηµαMνβ + iηνβMµα − iηµβMνα

(156)

where P µ are the generators of the translations and Mµν are the generators of the Lorentz
transformations6. Its unitary irreducible representations are infinite-dimensional and have been
classified by Wigner in 1939. They are classified according to the values of the so-called Casimir
operators P 2 ≡ PµP

µ and W 2 ≡ WµW
µ, where Wµ = 1

2
εµναβP

νMαβ is the so-called Pauli-
Lubanski vector. It is seen, using equations (156), that P 2 and W 2 commute with all elements
of the Poincaré algebra: they are invariant under infinitesimal transformations of the Poincaré
group. Thus, they take constant values inside an irreducible representation, just like ~J 2 takes
a constant value inside a fixed representation of the rotation group with generators J i. The
unitary representations of the Poincaré group are classified by the following values of the Casimir
operators:
• P 2 = −m2 < 0, W 2 = m2s(s + 1) with s = 0, 1

2
, 1, 3

2
, 2...: it corresponds to quantum

particles of mass m and spin s. This unitary representation is associated with a Hilbert space
that contains the allowed states of a relativistic particle with mass m and spin s.
• P 2 = 0, W 2 = 0 and with Wµ = ±sPµ where s = 0, 1

2
, 1, 3

2
, 2...: massless particles with

helicity s.
• P 2 = 0, W 2 = k2 > 0: massless “particles” with infinitely many states of “polarization”

that can vary continuously: they do not seem to have any immediate application to field theory
(at least at the perturbative level).
• P 2 = −m2 > 0: tachyonic representations, never used in physics (inconsistent with

standard physical interpretations).
• Pµ = 0, Wµ = 0: trivial (scalar) representation → vacuum (no particles).

For example, the physical case of mass m and spin s (i.e. the case with P 2 = −m2 > 0 and
W 2 = m2s(s + 1)) corresponds to an infinite-dimensional vector space that is constructed as
the Hilbert space spanned by vectors of the form

|~p, s3〉 , ~p ∈ R3, s3 = −s, ...,+s (157)

which are the eigenstates of the linear momentum operator ~̂p and of the component of the spin
operator along the z-axis Ŝ3. Unitary operators representing the Poincaré group transforma-
tions act on this infinite-dimensional Hilbert space.

6The Lorentz part of this algebra was found previuosly using the defining representation of the Lorentz group.
The Poincaré group, as given above, is not defined in terms of matrices only. A way of finding its Lie algebra
is to consider its generators, that perform the infinitesimal transformation, in a quantum mechanical Hilbert
space where Pµ = p̂µ and Mµν = x̂µp̂ν − x̂ν p̂µ, with the elementary commutators given by [x̂µ, p̂ν ] = iδµν . This
allows to deduce the Lie algebra of the Poincaré group given above.
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Exercises

Please test your understanding of the material presented in the lecture notes by solving the
following exercises:

1. Prove that the matrices of the groups GL(N,R), SL(N,R), O(N), and SO(N) satisfy
the group axioms.

2. Calculate the electric charges of the elementary particles listed in table (84) using the
quantum numbers provided in the last row of the same table.

3. Show that the generators (T a)αβ in the fundamental representation of SU(N) define
an invariant tensor when all indices are transformed accordingly. You only need to consider
infinitesimal transformations.

4. Show that for a simple Lie group, the expression C2 = T aT bγab is a Casimir operator,
i.e. it commutes with all generators T a. Here, γab denotes the Killing metric whose inverse γab

is defined by tr(T aT b) = 1
2
γab.

5. Derive the transformation rules for the electric and magnetic fields, ~E and ~B, under the
Lorentz transformation in eq. (129), using the tensor law from eq. (139).

6. Verify that the Lorentz matrices in eq. (146) reproduce the result of eq. (144) after
applying eq. (147).

7. Determine the Lie algebra of the Poincaré group by following the hints provided in
footnote 6.
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