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Fiorenzo Bastianelli

1 Foreword

General Relativity is a vast subject with many textbooks available. In this class, I will use two
main textbooks to guide you through the basics. The first one is S. Weinberg “Gravitation and
Cosmology”, John Wiley & Sons 1972, which covers tensor analysis and Einstein’s equation
(chapters 3-7). The second one is H. Ohanian and R. Ruffini “Gravitation and Spacetime”,
CUP 2013, which offers more insights on classical tests, Schwarzschild black hole solution, and
gravitational waves, and, of course, other topics.

These notes are supplementary and incomplete. They only cover some selected topics.
Therefore, you should rely on the textbooks as your primary source of study.

2 The principle of equivalence of gravitation and inertia

You can find more details about this topic in Chapter 3 of [1], which is highly recommended.
Newton’s law of universal gravitation tells us how massive bodies attract each other with

gravitational forces. Suppose we haveN particles with inertial massesm
(I)
k , gravitational masses

m
(G)
k , and positions ~xk, with k = 1, .., N . Then, the gravitational force on the k-th particle is

given by

m
(I)
k

d2~xk
dt2

= G
∑
l 6=k

m
(G)
k m

(G)
l

~xl − ~xk
|~xl − ~xk|3

. (1)

In addition, it is found that the inertial mass and the gravitational mass of a particle are
equal, as confirmed by experiments. This means that we can use the same mass for both the
acceleration and the attraction of a particle, i.e. m

(I)
k = m

(G)
k for any k, which then simplifies

from eq. (1).
The principle of equivalence of gravitation and inertia is based on this equality of masses

and states that: In any gravitational field, one can always find a local inertial frame (a free-
falling frame) at any point in spacetime, such that near that point the laws of nature look like
the ones in special relativity, where no gravitational field is present.

This principle helps us to describe how gravity works and find the equations of motion that
govern it (Einstein’s equations). To apply this principle, we need to use tensor calculus, which
gives us the tools to study arbitrary change of coordinates in spacetime. This is a branch of
mathematics called differential geometry. Einstein illustrated the equivalence principle with
the example of an elevator that is falling freely under gravity.

The force of gravity on a point particle

Let us use the above principle to find out how one can describe the force of gravity that
acts on a point particle of mass m. In the reference frame with coordinates xµ, one observes a
particle that feels a gravitational force. We have to discover how to describe mathematically
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such a force. Thus, we use the principle of equivalence, which assures us that there must exist
an inertial frame with coordinates ξα (a frame in free fall), such that locally (i.e. in a small
neighborhood of the point where the particle is located and for a small amount of time around
the time of observation) the particle satisfies the equations of motion of a free particle as known
from the theory of special relativity

d2ξα

dτ 2
= 0 (2)

where the proper time τ is computed using the Minkowski metric ηαβ

dτ 2 = −ηαβdξαdξβ . (3)

In this particular frame, no force of gravity is experienced locally, i.e. near the position of
the pointlike particle. Then, we can go back to the original frame with coordinates xµ and
recognize how the gravitational force is described there. We use the relations between the
coordinate systems, i.e. ξα = ξα(x) and the inverse xµ = xµ(ξ), to compute by the chain rule

0 =
d2ξα

dτ 2
=

d

dτ

(∂ξα
∂xµ

dxµ

dτ

)
=

∂2ξα

∂xν∂xµ
dxν

dτ

dxµ

dτ
+
∂ξα

∂xµ
d2xµ

dτ 2
. (4)

This equation is written more simply by multiplying with ∂xλ

∂ξα
with a contraction on the index

α, and using
∂xλ

∂ξα
∂ξα

∂xµ
=
∂xλ

∂xµ
= δλµ . (5)

One finds
d2xµ

dτ 2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0 (6)

where we have defined the affine connection

Γλµν =
∂xλ

∂ξα
∂2ξα

∂xµ∂xν
(7)

and renamed indices. The affine connection is symmetric under the exchange of the lower
indices

Γλµν = Γλνµ (8)

because derivatives commute.
Now, one must express the proper time (3) in terms of the new coordinates

dτ 2 = −ηαβdξαdξβ = −ηαβ
∂ξα

∂xµ
dxµ

∂ξβ

∂xν
dxν (9)

which we rewrite in the form
dτ 2 = −gµν(x)dxµdxν (10)

where the metric tensor gµν is defined by

gµν(x) = ηαβ
∂ξα

∂xµ
∂ξβ

∂xν
. (11)

Eqs. (6) and (11) are the equations that govern the motion of the particle under the force
of gravity.
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There is a direct relation between the metric tensor (which we interpret as the potential of
the gravitational force) and the affine connection (the coefficients that determine the gravita-
tional force on the particle). The relation is found as follows: one differentiates eq. (11) with
respects to xλ

∂gµν
∂xλ

= ηαβ
∂2ξα

∂xλ∂xµ
∂ξβ

∂xν
+ ηαβ

∂ξα

∂xµ
∂2ξβ

∂xλ∂xν
, (12)

that using (7) is rewritten as
∂gµν
∂xλ

= Γρλµgρν + Γρλνgµρ . (13)

Then, computing
∂gµν
∂xλ

+
∂gλν
∂xµ

− ∂gµλ
∂xν

= 2gρνΓ
ρ
λµ (14)

and using the inverse metric gσν , that satisfies gσνgνρ = δσρ , one finds

Γσλµ =
1

2
gσν
(∂gµν
∂xλ

+
∂gλν
∂xµ

− ∂gλµ
∂xν

)
. (15)

It is convenient to use the shorthand notation ∂µ ≡ ∂
∂xµ

and rename indices to write this formula
in the form

Γλµν =
1

2
gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν) . (16)

The Newtonian limit

To relate the above equations to Newton’s theory, let us look at the simple case of a slow-
moving particle in a weak and stationary gravitational field. Since the particle moves slowly,
we can ignore all but the zero-component of the 4-velocity in (6)

dxµ

dτ
=
(dx0
dτ

,
d~x

dτ

)
= (cγ,~vγ) = (γ, ~βγ) (17)

since |~β| � 1 for a slow motion (in our units c = 1), and find (recalling that we denote x0 ≡ t
in this frame)

d2xµ

dτ 2
+ Γµ00

dt

dτ

dt

dτ
= 0 . (18)

For a stationary field, the time derivatives of the metric vanish, and one is left with

Γµ00 = −1

2
gµν∂νg00 . (19)

For a weak field, we may use nearly Cartesian coordinates and write the metric gµν as a weak
perturbation of the Minkowski metric ηµν

gµν = ηµν + hµν . (20)

At lowest order in hµν we find

Γµ00 = −1

2
ηµν∂νh00 →

{
Γ0
00 = 0

Γi00 = −1
2
∂ih00

(21)
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and the equations of motion (18) simplify further to
d2x0

dτ 2
≡ d2t

dτ 2
= 0

d2~x

dτ 2
=

1

2
~∇h00

( dt
dτ

)2
.

(22)

(23)

The first equation is solved by t = ατ + α0 for some constants α and α0. It tells us that dt is
proportional to dτ , i.e. dt = αdτ . Using this proportionality, we find that the second equation
may be rewritten as

d2~x

dt2
=

1

2
~∇h00 (24)

that has the Newtonian form
d2~x

dt2
= −~∇φ (25)

with the Newtonian potential φ related to the metric deformation by

h00 = −2φ . (26)

For example, consider the case of the Newtonian potential φ created by a large mass M placed
at the origin

φ = −GM
r

. (27)

Then, the ‘00’ component of the metric takes the form

g00 = η00 + h00 = −1− 2φ = −1 +
2GM

r
. (28)

Note that φ is adimensional (we use c = 1). Some values are as follows: on the surface of the
sun φsun ≈ 10−6, on the earth φearth ≈ 10−9, on a white dwarf φwd ≈ 10−4, on the surface of a
proton φproton ≈ 10−39. Note also that |g00| < 1, which is related to gravitational time dilation
to be discussed next.

Gravitational time dilation

A clock in a gravitational field runs slower than a clock in a flat space. To see why, we
can use the principle of equivalence and imagine a locally inertial frame where gravity does not
affect the clock. In this frame, we can choose coordinates ξ′α where the clock is stationary and
ticks at regular intervals ∆τ , as set by the maker. This measures the proper time of the clock
and we have

∆τ ≡ dt′ = dξ′0 . (29)

∆τ is the clock’s basic unit. It could be, for example, the period of a wave arising from a
specific atomic transition of an atom at rest and in the absence of gravity. In another inertial
frame with coordinates ξα, in which the clock moves and travels an infinitesimal displacement
dξα, the formula becomes

∆τ =
√

(dξ′0)2 =
√
−ηαβdξαdξβ (30)

as dictated by special relativity.
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Now, in the frame with coordinates xµ, where gravity is present and affects the clock, the
space-time interval dxµ between ticks is fixed by

∆τ =
√
−ηαβdξαdξβ =

√
−ηαβ

∂ξα

∂xµ
∂ξβ

∂xν
dxµdxν =

√
−gµν(x)dxµdxν . (31)

If the clock moves with velocity dxµ

dt
, were t = x0 is the time coordinate in that frame, one may

write

∆τ =

√
−gµν(x)

dxµ

dt

dxν

dt
dt . (32)

In particular, for a clock at rest in the gravitational field, one may set d~x
dt

= 0 to find

∆τ =
√
−g00(x)dt . (33)

The lapse of time dt is time-dilated

dt =
∆τ√
−g00(x)

> ∆τ (34)

(recall that in the weak field limit g00 = −1 + 2GM
r

has modulus smaller than 1, i.e. |g00| ≤ 1).
To measure this gravitational time dilation, one has to compare time dilation at different

points, otherwise the measuring device would suffer the same time delay. Thus, taking two
different points xµ1 and xµ2 , one equates

∆τ =
√
−g00(x1)dt1 =

√
−g00(x2)dt2 (35)

to obtain

dt1
dt2

=

√
g00(x2)

g00(x1)
. (36)

For the frequency ν = 1
dt

corresponding to the period dt, this formula becomes

ν2
ν1

=

√
g00(x2)

g00(x1)
. (37)

In the weak field limit g00(x) = −1 − 2φ(x), then setting ν1 = ν and ν2 = ν + ∆ν, we find a
change ∆ν in frequency given by

ν2
ν1

=
ν + ∆ν

ν
= 1 +

∆ν

ν
=

√
g00(x2)

g00(x1)
=

√
1 + 2φ(x2)

1 + 2φ(x1)
≈ 1 + φ(x2)− φ(x1) . (38)

For an application, consider an atomic transition at the earth’s surface with position x1 and
frequency ν1. Observe the same transition at the sun’s surface with position x2 and frequency
ν2. The sun’s potential φ(x2) is much larger than the earth’s potential φ(x1), so that the latter
can be ignored, and we get

∆ν

ν
= φ(x2)− φ(x1) ≈ φ(x2) = −GMsun

Rsun

≈ −2.12 10−6 . (39)

The frequency on the sun is smaller than the frequency seen far away for the same atomic
transition: a gravitational red shift of the frequency is expected, as verified experimentally.
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3 The principle of general covariance and tensor analysis

This topic is described in Chapter 4 of [1].
The principle of equivalence can be replaced by a more efficient principle of general covariance,
which allows us to find in an easier way the correct equations of motion that are valid in the
presence of a gravitational field. The principle of general covariance states that:
“A physical equation is valid in an arbitrary gravitational field if it satisfies two conditions:
(i) the equation reduces to the special relativistic form in the absence of gravity, where the metric
is the Minkowski metric (gµν → ηµν) and the affine connection vanishes (Γλµν → 0).
(ii) the equation is generally covariant, i.e. it keeps the same form under an arbitrary change
of coordinates xµ → x′µ(x).

We can see that the principle of general covariance implies the principle of equivalence by
noting that: point (ii) ensures that the equations are valid in any coordinate system if they are
valid in at least one frame; point (i) verifies that they are valid in a locally inertial frame, where
gravity is canceled by inertial forces as dictated by the principle of equivalence, and reduce to
the form known from special relativity. To apply the principle of general covariance we need
to use tensor analysis, which deals with arbitrary coordinate transformations, In mathematics
this topic is part of differential geometry.

Tensor analysis

Scalars, vectors, and tensors are quantities defined by their behavior under a change of the
coordinate system. A change of coordinates is specified by functions

xµ → x′µ = x′µ(x) (40)

that are required to be invertible. One can return to the original frame by using the inverse
functions

xµ = xµ(x′) . (41)

Invertibility requires that at any point

det
∂x′µ

∂xν
6= 0 . (42)

Notice that using the chain rule for differentiation and using the transformations in (40)–(41),
one finds that

δµν =
∂x′µ

∂x′ν
=
∂x′µ

∂xλ
∂xλ

∂x′ν
(43)

which tells that at any given point in spacetime the matrix

∂x′µ

∂xλ
(44)

is the inverse of the matrix
∂xλ

∂x′ν
(45)

and vice versa.
The displacements dxµ and dx′µ are thus related by

dx′µ =
∂x′µ

∂xν
dxν (46)
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which suggests the following definitions of “geometrical” objects, that turn out to be particularly
useful. One defines scalar, vectors, and tensors by

φ(x) → φ′(x′) = φ(x) scalar

V µ(x) → V ′µ(x′) =
∂x′µ

∂xν
V ν(x) contravariant vector

Wµ(x) → W ′
µ(x′) =

∂xν

∂x′µ
Wν(x) covariant vector

T µν(x)→ T ′µν(x′) =
∂x′µ

∂xλ
∂x′ν

∂xρ
T λρ(x) tensor of rank (2,0)

Sµν(x)→ S ′µν(x
′) =

∂x′µ

∂xλ
∂xρ

∂x′ν
Sλρ(x) tensor of rank (1,1)

· · · → · · · · · ·

(47)

and so on for tensors of rank (m,n), where there are m matrices ∂x′µ

∂xν
that rotate the m upper

indices, and n matrices ∂xµ

∂x′ν
that rotate the n lower indices. For example, the (2, 1)-rank tensor

F µν
λ transforms as

F µν
λ(x) → F ′µνλ(x

′) =
∂x′µ

∂xρ
∂x′ν

∂xσ
∂xλ

∂x′τ
F ρσ

τ (x) (48)

Note that with these definitions, contraction of an upper index with a lower index produces
a scalar

V µ(x)Wµ(x) → V ′µ(x′)W ′
µ(x′) =

∂x′µ

∂xν
V ν(x)

∂xλ

∂x′µ
Wλ(x) =

∂x′µ

∂xν
∂xλ

∂x′µ︸ ︷︷ ︸
δλν

V ν(x)Wλ(x) = V ν(x)Wν(x)

(49)
i.e.

V µ(x)Wµ(x) → V ′µ(x′)W ′
µ(x′) = V µ(x)Wµ(x) (50)

which is precisely the transformation law of a scalar.
Not all quantities that we have defined so far are tensors: the metric gµν(x) is a rank (0, 2)

tensor

gµν(x) → g′µν(x
′) =

∂xλ

∂x′µ
∂xρ

∂x′ν
gλρ(x) (51)

but the affine connection Γλµν is not a tensor as it transforms in a more complicated way

Γλµν(x) → Γ′λµν(x
′) =

∂x′λ

∂xα
∂xβ

∂x′µ
∂xγ

∂x′ν
Γαβγ(x) +

∂x′λ

∂xα
∂2xα

∂x′µ∂x′ν
(52)

where the second term breaks the tensorial behavior (this behavior can be checked in (7),
recalling that the affine connection for the Minkowski metric ηαβ vanishes). The second term
can be written also as

∂x′λ

∂xα
∂2xα

∂x′µ∂x′ν
= − ∂x

α

∂x′µ
∂xβ

∂x′ν
∂2x′λ

∂xα∂xβ
. (53)

The proof is obtained by taking a derivative with respect to x′µ of the relation

δλν =
∂x′λ

∂xρ
∂xρ

∂x′ν
(54)

and using the chain rule for differentiation.
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Thanks to these definitions, tensorial equations, which are defined as equations that relate
tensors of the same rank, take the same form in all reference frames: e.g. if Aµν and Bµν are
tensors then the tensorial equation

Aµν(x) = Bµν(x) (55)

maintains the same form in all frames, i.e.

Aµν(x) = Bµν(x) ←→ A′µν(x
′) = B′µν(x

′) . (56)

The same equation can be written also as

Aµν(x)−Bµν(x) = 0 (57)

where the right-hand side is understood as the zero tensor of appropriate rank, i.e. the tensor
which has all components null (then, it is easily verified that the components vanish in all
frames).

Tensors are elements of a vector space of appropriate dimension. One can verify the following
algebraic properties of tensors (tensor algebra):

A) A linear combination of tensors of the same rank is a tensor of the same rank.
E.g., if Aµν and Bµν are tensors and a and b scalars then

Tµν = aAµν + bBµν (58)

is a tensor.
B) Tensor product (or direct product) of tensors.

The multiplications of the components of the tensors give rise to a new tensor of appropriate
rank. E.g., if Aµν and Bµ are tensors, then

Tµν
λ = AµνB

λ (59)

is a tensor of rank (1, 2).
C) Contraction of a contravariant index with a covariant index of a tensor produces a tensor

of lower rank. E.g., taking the tensor Tµν
λ, one obtains a vector Aµ by setting

Tµν
ν = Aµ , (60)

and another vector by by setting
Tµν

µ = Bν . (61)

Indeed, we already realized in eq. (50) that index contraction gives rise to a scalar, as far as the
transformation properties of those indices are concerned. These again are tensorial equations,
valid in every frame.

Finally, indices of a tensor may be raised and lowered by using the metric tensor gµν , and
its inverse gµν that satisfies

gµν(x)gνλ(x) = δλµ. (62)

For example, from the contravariant vector V µ one obtains the covariant vector Vµ as

Vµ = gµνV
ν (63)

and similarly, from the covariant vector Vµ one obtains the contravariant vector V µ by

V µ = gµνVν . (64)
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Covariant derivatives

Derivatives of tensors are not tensors themselves. This causes a problem when defining
tensorial equations that must contain derivatives. This problem is solved by using the concept
of covariant derivatives, which are derivatives that when applied to tensors produce new tensors.

To expose the problem, let us verify that the derivative of a vector field V ν(x)

∂µV
ν(x) =

∂V ν(x)

∂xµ
(65)

is not a tensor. We compute

∂µV
ν(x) → ∂′µV

′ν(x′) =
∂V ′ν(x′)

∂x′µ
=

∂

∂x′µ

(
V β(x)

∂x′ν

∂xβ

)
=
∂xα

∂x′µ
∂

∂xα

(
V β(x)

∂x′ν

∂xβ

)
=
∂xα

∂x′µ

(∂V β(x)

∂xα
∂x′ν

∂xβ
+ V β(x)

∂2x′ν

∂xα∂xβ

)
=
∂xα

∂x′µ
∂x′ν

∂xβ
∂αV

β(x) + V β(x)
∂xα

∂x′µ
∂2x′ν

∂xα∂xβ

(66)

where the first term would be the one expected for a tensorial transformation, but the second
term breaks the tensorial character. A similar transformation appears in the transformation
rule of the affine connection, see eqs. (52)–(53). This fact can be used to introduce the concept
of the covariant derivative of the vector field, defined by

∇µV
ν ≡ ∂µV

ν + ΓνµλV
λ (67)

which then transforms as a tensor

∇µV
ν(x) → ∇′µV ′ν(x′) =

∂xρ

∂x′µ
∂x′ν

∂xσ
∇ρV

σ(x) . (68)

Geometrically, the connection connects the tangent spaces of nearby points and allows to define
the parallel transport of vectors, which are then compared in defining the covariant derivative.

The concept of a covariant derivative allows to consider tensorial equations with derivatives,
and thus the identification of the correct differential equations describing physical systems under
the force of gravity.

In general, covariant derivatives of contravariant and covariant vectors are defined by

∇µV
ν = ∂µV

ν + ΓνµλV
λ (69)

∇µVν = ∂µVν − ΓλµνVλ (70)

and similarly for more general tensors, which are defined to have a connection for each index,
e.g.

∇µV
νλ
ρ = ∂µV

νλ
ρ + ΓνµαV

αλ
ρ + ΓλµαV

να
ρ − ΓαµρV

νλ
α . (71)

The covariant derivative satisfies the Leibniz rule for taking the derivative of products of
tensors. For example, one verifies that on a scalar field the covariant derivative reduces to
the usual partial derivative, consistently with the Leibniz rule: taking the scalar V µWµ, its
derivative can be expanded as

∂ν(V
µWµ) = ∂νV

µWµ + V µ ∂νWµ (72)
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which of course is correct. On the other hand, one verifies that using covariant derivatives all
terms with a connection cancel each other (this is easily recognized after renaming indices)

∂ν(V
µWµ) = ∇ν(V

µWµ) = ∇νV
µWµ + V µ∇νWµ

= (∂νV
µ + ΓµνλV

λ)Wµ + V µ(∂νWµ − ΓλνµWλ)

= ∂νV
µWµ + V µ ∂νWµ

(73)

The covariant derivative of the metric vanishes

∇λgµν = ∂λgµν − Γσλµgσν − Γσλνgµσ = 0 , (74)

a fact that is referred to by saying that the metric is covariantly constant. This can be verified
using eq. (16), that relates the affine connection to the derivative of the metric. Basically, this
statement reinterpret the content of eq. (13).

Conversely, eq. (74) can be used to derive relation (16). Let us show this point. Since the
metric is covariantly constant we may write

0 = ∇λgµν +∇µgλν −∇νgλµ

= ∂λgµν − Γσλµgσν − Γσλνgµσ

+ ∂µgλν − Γσµλgσν − Γσµνgλσ

− ∂νgλµ + Γσνλgσν + Γσνµgλσ

= ∂λgµν + ∂µgλν − ∂νgλµ − 2Γσλµgσν

(75)

where we have used the symmetry on the first two indices of the affine connection. Then, using
the inverse metric we find

Γσλµ =
1

2
gσν(∂λgµν + ∂µgλν − ∂νgλµ) (76)

as expected.
Finally, let us consider a vector field defined along a curve, rather than all over space-time.

The covariant derivative of a vector V µ(τ) defined along a curve parametrized by xµ(τ), where
τ is the parameter, takes the form

DV µ

dτ
=
dV µ

dτ
+
dxρ

dτ
ΓµρσV

σ . (77)

As an example, consider a worldline parameterized by xµ(τ). Its derivative with respect to the
parameter τ gives the four-velocity, i.e. the tangent vector to the curve

dxµ

dτ
. (78)

This 4-velocity is easily verified to be a vector as it has the vector transformation law (just use
the chain rule for differentiation). Its covariant derivative takes the form

D

dτ

dxµ

dτ
=
d2xµ

dτ 2
+ Γµρσ

dxρ

dτ

dxσ

dτ
(79)

which is again a vector defined along the curve. With the notation

dxµ

dτ
≡ ẋµ (80)
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we usually write it as
D

dτ

dxµ

dτ
= ẍµ + Γµρσẋ

ρẋσ . (81)

The equation
D

dτ

dxµ

dτ
= 0 (82)

is known as the geodesic equation, already encountered in (6) to describe the motion of a par-
ticle under the force of gravity.

Parallel transport

The connection Γλµν discussed above can be interpreted as providing a definition of the
parallel transport of vectors. Let us elaborate more on this point. Vectors at a given point
belong to the tangent space of the manifold at that point. The manifold in question refers to
the spacetime in our applications. Tangent spaces at different points are in principle different
spaces. Of course they are isomorphic, but there is no canonical isomorphism that relates
vectors of one space to vectors of the other space in a unique way. Thus, one must define a
rule how to relate vectors belonging to different spaces. One way to relate the tangent spaces
at two different points is to choose a path that connects the two points, and then parallel
transport the vectors of the first tangent space to the second tangent space. This definition in
general depends on the chosen path. For nearby points, a vector V µ(x) at point xµ is parallel
transported to a vector V µ

//(x+ ∆x) at point xµ + ∆xµ as follows

V µ
//(x+ ∆x) = V µ −∆xν ΓµνλV

λ(x) . (83)

This definition allows to introduce covariant derivatives geometrically. For a vector field V µ(x)
defined on the manifold, the covariant derivative measures how the vectors at nearby points
differ from their parallel transported ones, i.e.

V µ(x+ ∆x)− V µ
//(x+ ∆x) = ∆xν(∂νV

µ(x) + ΓµνλVλ(x) ≡ ∆xν ∇νV
µ(x) . (84)

This reproduces the same formula defined earlier. A vector V µ parallel transported along the
path parametrized by the functions xµ(τ) satisfies the equation

DV µ

dτ
=
dV µ

dτ
+
dxρ

dτ
ΓµρσV

σ = 0 . (85)

Gradient, curl, and divergence

The gradient of a scalar field φ(x) takes the usual form, as for this case the usual partial
derivative and the covariant derivative coincide

∇µφ = ∂µφ . (86)

The definition of the curl of a three-dimensional vector field ~A(x) is better given through
its components

(∇× ~A)i = εijk∂jAk =
1

2
εijk(∂jAk − ∂kAj) (87)
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with the last expression that can be used to extend the definition to arbitrary dimensions. This
is done by eliminating the antisymmetric ε tensor, i.e. defining

∂jAk − ∂kAj → ∂µAν − ∂νAµ . (88)

This expression defines the curl in arbitrary dimensions and can be covariantized by substituting
the covariant derivative with the usual ones. However, there is a simplification. One notices
that all the terms with a connection cancel out. This shows that the original expression was
already covariant without the need of introducing a metric gµν and related connection Γλµν .

This property extends to arbitrary antisymmetric tensors of rank (0, p), i.e. totally anti-
symmetric tensors Aµ1µ2···µp whose curl is defined by

(dA)µ1µ2···µp+1 = ∂µ1Aµ2µ3···µp+1 ± cyclic permutations (89)

where the sign depends on the permutation: the + sign for even permutations of 1, 2, · · · , p+ 1
and the − sign for odd permutations. The totally antisymmetric tensors Aµ1µ2···µp are often
called p-forms, and the curl d is called exterior derivative. The exterior derivative is a covariant
operation: one may check that all connections cancel out if one would have used covariant
derivatives in its definition. The exterior derivative applied twice vanishes because of the
antisymmetry, i.e. d2 = 0.

Let us now comment on the divergence of a vector field Jµ(x). It is covariantized by
substituting the partial derivative with the covariant one

∂µJ
µ → ∇µJ

µ . (90)

The connection remains, but it can be written in a simpler form

∇µJ
µ = ∂µJ

µ + ΓµµνJ
ν (91)

where

Γµµν =
1

2
gµλ∂νgµλ =

1
√
g
∂ν
√
g (92)

with g = |det gµν |. At the end, one may write

∇µJ
µ =

1
√
g
∂µ(
√
gJµ) . (93)

The proof of (91) goes as follows

1
√
g
∂ν
√
g = ∂ν ln

√
g =

1

2
∂ν ln g =

1

2
∂ν ln det gµλ =

1

2
∂νtr ln gµλ =

1

2
gλµ∂νgµλ . (94)

4 Effects of gravitation

This topic is described in Chapter 5 of [1].
We now make use of the tensor calculus to study how gravity affects the equations of mechan-
ics and electromagnetism studied previously in special relativity. We make use of the principle
of general covariance. We take the equations of motion we know from special relativity and
rewrite them in a form that makes them look generally covariant. This last step is achieved
by identifying first the tensors that describe the physical quantities in the equations. Then,
one substitutes the Minkowski metric ηµν by gµν , and derivatives of tensors by their covariant
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derivatives. In this way, one finds equations of motion that are generally covariant. They
include the force of gravity according to the principle of general covariance.

Particle mechanics

We know that the motion of a free particle is described in special relativity by eqs. (2),(3).
Using the particle coordinates xµ, the equations read

d2xµ

dτ 2
= 0 , dτ 2 = −ηµνdxµdxν . (95)

They must be covariantized. The 4-velocity dxµ

dτ
is easily verified to be a vector

dxµ

dτ
=
∂x′µ

∂xν
dx′ν

dτ
(96)

where the term ∂x′µ

∂xν
that determines the vectorial character is evaluated on the worldline at

time τ . Then, we use the covariant derivative to preserve its vectorial character

D

dτ

dxµ

dτ
= 0 . (97)

This is the correct equation that includes the gravitational force. In standard notations, it
takes the form

ẍµ + Γµρσẋ
ρẋσ = 0 . (98)

Similarly, the proper time is covariantized by substituting ηµν with the metric gµν

dτ 2 = −gµνdxµdxν . (99)

To summarize, the covariant extensions of eqs. (95) are

D

dτ

dxµ

dτ
= 0 , dτ 2 = −gµνdxµdxν (100)

and they include the force of gravity acting on the particle. As we see, this is a much faster
procedure than the one used in sect. 2.

Klein-Gordon equation

The Klein-Gordon equation is a relativistic equation for a scalar field φ(x). In natural units
(c = ~ = 1) it reads

(∂µ∂µ −m2)φ(x) = 0 (101)

The first derivative of a scalar is already covariant

∇µφ = ∂µφ . (102)

The second derivative requires a connection

∇µ∇νφ = ∂µ∇νφ− Γλµν∇λφ = ∂µ∂νφ− Γλµν∂λφ . (103)

Finally, the scalar product is taken with the inverse metric gµν (i.e. substituting ηµν with
gµν(x)) and the covariantized Klein-Gordon equation becomes

(gµν∇µ∇ν −m2)φ = 0 (104)
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written equivalently as
(∇µ∇µ −m2)φ = 0 . (105)

It is customary to denote the covariant d’Alambert operator by a box

� = ∇µ∇µ (106)

and write the covariant equation as

(�−m2)φ = 0 . (107)

For explicit calculations, it is often useful to rewrite the d’Alambertian operator � acting
on a scalar field the following way

�φ =
1
√
g
∂µ
√
ggµν∂νφ . (108)

where g = |det gµν |. Here, the first derivatives ∂µ acts all the way through.

Electrodynamics

Maxwell’s equations can be written in special relativity as

∂µF
µν = −Jν

∂µFνλ + ∂νFλµ + ∂λFµν = 0
(109)

with the second one solved in terms of the 4-potential Aµ by

Fµν = ∂µAν − ∂νAµ . (110)

Let us see how to covariantize them. The second equation in (109) and its solution (110)
are covariantized by substituting derivatives with covariant derivatives

∇µFνλ +∇νFλµ +∇λFµν = 0

Fµν = ∇µAν −∇νAµ .
(111)

However, one verifies that the connection drops out in all of them, so that the original equations

∂µFνλ + ∂νFλµ + ∂λFµν = 0

Fµν = ∂µAν − ∂νAµ
(112)

were nevertheless covariant. In a sense, these equations do not feel the force of gravity.
As for the first one in (109), one must first raise indices using the general metric gµν

F µν = gµρgνσFρσ (113)

and then write it with a covariant derivative

∇µF
µν = −Jν . (114)

This is a covariant equation if Jν is a contravariant vector, which we assume to be the case.
Notice that the metric is covariantly constant, so that it commutes with the covariant

derivative. This facts allows to present eq. (114) in the equivalent form

∇µFµν = −Jν . (115)
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The Lorentz force and gravity

Finally, let us include gravity in the Lorentz force equation (with c = 1)

m
d2xµ

dτ 2
= eF µν dxν

dτ
(116)

by covariantization. We find

m
D

dτ

dxµ

dτ
= eF µνgνλ

dxλ

dτ
(117)

recalling that indices are now lowered and raised with gµν and gµν , as in eq. (113). To better
expose the places where the metric sits, it is perhaps easier to rewrite the covariant equation
in the form

m
D

dτ

dxµ

dτ
= egµνFνλ

dxλ

dτ
(118)

where Fµν = ∂µAν − ∂νAµ, i.e.

m(ẍµ + Γµνλẋ
ν ẋλ) = egµνFνλẋ

λ . (119)

to recognize that the force of gravity acts through the terms with gµν and Γµνλ.

5 Curvature

This topic is described in Chapter 6 of [1].
The equations of motion for the gravitational field describe the behavior of the metric

tensor gµν(x), which contains the potential for the gravitational force. To ensure covariance,
the equations must be constructed using tensors. It can be proven that no tensor can be
constructed solely from the metric gµν and its first derivatives ∂λgµν . This is so because the
covariant derivatives of the metric vanish, ∇λgµν = 0, while the affine connection Γλµν , defined
as

Γλµν =
1

2
gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν), (120)

is not a tensor. One may notice that Γλµν and ∂λgµν contain both 40 independent components,
so that the former is equivalent to the latter.

One can construct tensors by including second derivatives of the metric. To find them one
can use the properties of covariant derivatives. This provides a quick way of identifying such
tensors.

Covariant derivatives do not commute and they may be used to define implicitly the Rie-
mann curvature tensor Rµν

λ
ρ by the relation

[∇µ,∇ν ]V
λ = Rµν

λ
ρV

ρ . (121)

The left-hand side is a tensor, so that also the right-hand side must be a tensor. In particular,
the quantity Rµν

λ
ρ must be a tensor.

The Riemann tensor Rµν
λ
ρ is manifestly antisymmetric under the exchange of the first two

indices µ, ν as a consequence of its definition. A direct calculation shows that

Rµν
λ
ρ = ∂µΓλνρ − ∂νΓλµρ + ΓλµσΓσνρ − ΓλνσΓσµρ . (122)

A mnemonic for remembering this structure is to write

Rµν
λ
ρ = ∇µΓλνρ − (µ↔ ν) (123)
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where ∇µ contains a connection for the upper index only (in general, covariant derivatives are
defined only for tensors).

Algebraic properties of the Riemann tensor are best written by lowering the upper index
with the metric, Rµνλρ = gλσRµν

σ
ρ. They are the following ones

Rµνλρ = Rλρµν (symmetry) (124)

Rµνλρ = −Rνµλρ = −Rµνρλ (antisymmetry) (125)

Rµνλρ +Rλµνρ +Rνλµρ = 0 (cyclicity) . (126)

A way of proving these relations is to write them down in terms of the metric using (122) and
(120). This is very laborious, but correct. A faster way is given in the exercises.

Additional tensors can be constructed by index contraction: they are the Ricci tensor Rµν

and the curvature scalar R

Rµν = Rλµ
λ
ν (Ricci tensor) (127)

R = gµνRµν (Ricci scalar or curvature scalar) . (128)

Other contractions do not give rise to independent tensors. From (124) it follows that the Ricci
tensor is symmetric

Rµν = Rνµ . (129)

At this stage, it is useful to compute the number of independent components CRiem(D) of
the Riemann tensor in arbitrary dimensions D. To start with let us consider the metric tensor
gµν and the Ricci tensor Rµν that are both symmetric tensors. In arbitrary D dimension, they
have the same number of independent components Cmetric(D) of a symmetric matrix, given by

Cmetric(D) =
1

2
D(D + 1) . (130)

As for the Riemann tensor, the number of its independent components is given by

CRiem(D) =
1

2

(1

2
D(D − 1)

)(1

2
D(D − 1) + 1

)
− D(D − 1)(D − 2)(D − 3)

4!

=
1

12
D2(D2 − 1) .

(131)

This value is obtained by considering the Riemann tensors as a symmetric matrix RAB where
A and B stands for the ordered pair of indices (µν) with µ < ν. The last term subtracts
the independent relations in (126), which are completely antisymmetric under the exchange of
indices. A few values are reported in the following table

D D4 CRiem(D) = D2(D2−1)
12

Cmetric(D) = D(D+1)
2

1 1 0 1
2 16 1 3
3 81 6 6
4 256 20 10
5 625 50 15
10 10000 825 55
11 14641 1210 66

Of course, we use D = 4 for our purposes: we see that the Riemann tensor has 20 components
while the Ricci tensor has 10 components, just like the metric.
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The componets of the Riemann tensor describe the curvature of a general D-dimensional
space. However, they do not do so in an invariant manner, for their values depend also on the
particular coordinate system chosen. The invariant characterization of the a curved space must
be given in terms of scalars constructed from Rµνλρ and gµν . The simplest scalar is R. Then,
one could consider scalars like RµνR

µν and RµνλρR
µνλρ. We will not study here this interesting

problem.

5.1 Bianchi identities

The Riemann tensor satisfies the following differential Bianchi identities

∇µRνλαβ +∇νRλµαβ +∇λRµναβ = 0 . (132)

The sum over the cyclic permutations of the first three indices makes the total combination
antisymmetric in those indices.

One may contract the Bianchi identities on the indices (ν, α) (multiplying by gνα) to find

∇µRλβ +∇αRλµαβ −∇λRµβ = 0 (133)

and contracting once more the indices (λ, β) one finds

∇µR− 2∇αRµα = 0 → ∇µ
(
Rµν −

1

2
gµνR

)
= 0 . (134)

It is customary to define the Einstein tensor Gµν by

Gµν = Rµν −
1

2
gµνR (135)

which is covariantly conserved ∇µGµν = 0, as seen from eq. (134).

Exercizes
These exercises help in proving some of the symmetry properties of the Riemann tensor.

Ex.1 Recalling that the metric is covariantly constant (∇µgαβ = 0) use [∇µ,∇ν ]gαβ = 0 to prove
the antisymmetry in the last two indices of the Riemann tensor, Rµναβ = −Rµνβα.

Solution: One may calculate

0 = [∇µ,∇ν ]gαβ = Rµνα
γgγβ +Rµνβ

γgαγ = Rµναβ +Rµνβα .

Ex. 2 Rewriting the Bianchi identities for electromagnetism using covariant derivatives, show
the cyclic property of the Riemann tensor, eq. (126).

Ex. 3 Use the cyclicity property (126) and the antisymmetries in eq. (124) to prove the sym-
metry property Rµνλρ = Rλρµν.

Ex. 4 From the Jacobi identity valid for arbitrary operators A,B,C

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

which is a consequence of the associativity of the multiplication of operators, consider the case
with (A,B,C) ≡ (∇µ,∇ν ,∇λ) acting on a vector field V ρ, i.e.(

[∇µ, [∇ν ,∇λ]] + [∇ν , [∇λ,∇µ]] + [∇λ, [∇µ,∇ν ]]
)
V ρ = 0

and prove the Bianchi identities in (132).
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6 Einstein’s equations of general relativity

This topic is described in Chapter 7 of [1].
We now come to Einstein’s field equations. They are the dynamical equations for the metric

gµν (the equivalent for the metric of the Maxwell’s equations for the potential Aµ) and can be
identified by using the principle of general covariance applied to Newton’s theory of universal
gravitation, once the latter has been modified to make it consistent with special relativity.

A weak and static field due to non-relativistic matter with mass density ρ(x) is described
by the Newtonian potential φ that satisfies the equation

∇2φ = 4πGρ (136)

where G = 6.67 10−11Nm2/Kg2 is the Newton gravitational constant. By now, we know that
this potential is embedded in the component g00 of the metric as follows

g00 ≈ −(1 + 2φ) . (137)

For example, a point-like particle of mass M at rest has a mass density

ρ(x) = Mδ3(~x) (138)

and it gives rise to a potential that satisfies the equation

∇2φ = 4πGMδ3(~x) → φ(x) = −GM
r

→ g00(x) = −1 +
2GM

r
. (139)

In special relativity, mass and energy are equivalent, so one can interpret ρ(x) as describing
the total energy density of the matter that gravitates. This density appears as the T00 compo-
nent of the energy-momentum tensor of the matter system. Thus, we can rewrite the equation
for the gravitational potential (136) in the form

∇2g00 = −8πGT00 . (140)

Special relativity implies this equation must be the component of a tensorial equation: in
different Lorentz frames the different components of the tensors are mixed by the Lorentz
transformations. We know already that T00 = ρ = Mδ3(~x) is the component of the tensor Tαβ,
the stress energy-momentum tensor. Therefore, one deduces that there must exist a tensor Gαβ

(tensor under Lorentz transformations) with the component G00 = −∇2g00 (the minus sign is
conventional) that can be constructed with second derivatives of the metric so that the Lorentz
invariant extension of (140) becomes

Gαβ = 8πGTαβ (141)

where the complete energy-momentum tensor Tαβ appears on the right-hand side. Moreover,
since the stress tensor Tαβ satisfies the conservation law

∂αTαβ = 0 (142)

also the Lorentz tensor Gαβ should satisfy for consistency

∂αGαβ = 0 . (143)

So far, this is just a consequence of special relativity.
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Finally, general relativity is obtained by searching for a general covariant extension of the
equation in (141), that must take the general covariant form

Gµν = 8πGTµν . (144)

The conservation of Tαβ, namely ∂αTαβ = 0 is covariantized to ∇µTµν = 0. By consistency, also
Gµν must be covariantly conserved, i.e. ∇µGµν . The weak and static limit identifies it uniquely
with the Einstein tensor that we discussed earlier on.

These considerations lead to the Einstein’s equations

Rµν −
1

2
gµνR = 8πGTµν (145)

which are generally covariant field equations for the metric gµν . The tensor Tµν is the energy-
momentum tensor of the matter that gravitates.

An equivalent way of writing these equations is to first take the trace (multiplying by gµν)
to find (in four spacetime dimensions)

R− 2R = 8πGT µν → R = −8πGT µµ

so that Einstein’s equations take the equivalent form

Rµν = 8πG
(
Tµν −

1

2
gµνT

λ
λ

)
. (146)

In vacuum, these equations reduce to
Rµν = 0 . (147)

An additional term with a dimensionful coupling constant Λ with positive mass dimensions,
the so-called cosmological constant, can be added to the equations

Rµν −
1

2
gµνR + Λgµν = 8πGTµν . (148)

Originally introduced by Einstein to describe a static universe, nowadays it allows us to
parametrize the presence of dark energy in the universe.

Finally, reintroducing by dimensional analysis the speed of light c, Einstein’s equations take
the form

Rµν −
1

2
gµνR + Λgµν =

8πG

c4
Tµν . (149)

However, we will continue to use units with c = 1.
After the construction of these equations, Einstein proposed three tests to verify its validity.

These classical tests were: the perihelion precession of the orbits of planets, the bending of light
around stars, and the gravitational redshift. They are well described in standard textbooks.
Here we will focus on more modern tests: the existence of gravitational waves and black holes.

7 Structure of Einstein’s equations, gauge symmetry,

harmonic gauge

The Einstein’s equations (149) are differential equations for the metric gµν . The form of the
solution ḡµν depends on the energy-momentum distribution of the matter content of spacetime,
as encoded by the stress tensor Tµν . In the words of Wheeler, “matter tells spacetime how
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to curve”, a sentence that describes Einstein equations, and “curved spacetime tells matter
how to move”, which refers to the equations of motion of matter once extended to include the
gravitational force (as described in section 4).

There are 10 equations and one might think that this is the right number of equations
needed to fix all of the 10 components of the metric. However, it is not so: there are gauge
symmetries related to the arbitrary change of coordinates that invalidate this counting. In
particular, given a solution ḡµν , one can obtain another solution ḡ′µν by performing a change of
coordinates. This fact can be recognized also in a different way: the Einstein equations are not
all independent since they satisfy the following differential constraints

∇µ
(
Rµν −

1

2
gµνR + Λgµν − 8πGTµν

)
= 0 . (150)

We have used this property in the construction of Einstein’s equations. More generally, the
existence of constraints is guaranteed by a theorem of Emmy Noether concerning theories with
gauge symmetries. The gauge symmetry in question is the one associated with an arbitrary
change of coordinates. It depends on the four arbitrary functions x′µ = x′µ(x).

The gauge symmetry implies that given a solution gµν(x), also g′µν(x) will be a solution if
g′µν is obtained from gµν by a change of coordinates

g′µν(x
′) = gαβ(x)

∂xα

∂x′µ
∂xβ

∂x′ν
. (151)

Under the change of coordinates x′µ = xµ−ξµ(x), parametrized by the infinitesimal vector field
ξµ(x), the metric varies infinitesimally as

δgµν(x) ≡ g′µν(x)− gµν(x) = ξα∂αgµν + (∂µξ
α)gαν + (∂νξ

α)gµα

= ∇µξν +∇νξµ .
(152)

This equation describes the infinitesimal form of the gauge symmetries of gravity

δgµν(x) = ∇µξν(x) +∇νξµ(x) (153)

which may be compared with the gauge symmetry of the Maxwell equations

δAµ(x) = ∂µα(x) . (154)

Gauge-fixing

The gauge symmetries allows to select gauge-fixing conditions that may be used to simplify
the study of solutions of the field equations, just like the Lorenz gauge ∂µAµ = 0 used in the
study of electromagnetism. In gravity, the gauge symmetries can be fixed by requiring the
harmonic gauge (or De Donder gauge) conditions

Γµ ≡ gνλΓµνλ = 0 ↔ ∂ν(
√
ggνµ) = 0 . (155)

These four conditions specify a class of reference frames in which the coordinates are har-
monic functions, just like the cartesian coordinates of flat spacetime. For this reason, the
coordinates of these reference frames are sometimes called quasi-cartesian coordinates.

To better appreciate the meaning of the harmonic gauge, let us remind that a scalar function
φ is called harmonic if it satisfies the equation

�φ = 0 . (156)

20



This equation can be written more explicitly as

0 = �φ = ∇µ∂µφ = gµν(∂µ∂νφ+ Γλµν∂λφ) = gµν∂µ∂νφ+ Γλ∂λφ (157)

and in the harmonic gauge it simplifies to

gµν∂µ∂νφ = 0 (158)

In such a frame, the coordinates xµ are themselves harmonic functions

�xµ = gνλ∂ν∂λx
µ = 0 (159)

just like the cartesian coordinates of Minkowski space.
Finally, let us mention that one can rewrite the harmonic gauge condition in an alternative

way. One can calculate

Γµ = gαβΓµαβ = gαβ
1

2
gµν(∂αgβν + ∂βgαν − ∂νgαβ)

=
1

2
gαβ(−∂αgµνgβν − ∂βgµνgαν − gµν∂νgαβ)

= −∂νgµν −
1

2
gµνgαβ∂νgαβ

= −∂νgµν − gµν
1
√
g
∂ν
√
g

= − 1
√
g
∂ν(
√
ggνµ)

(160)

which shows that the harmonic gauge condition can be written also as

∂ν(
√
ggνµ) = 0 . (161)

Killing vectors and isometries

There may exist spacetimes that admit special vector fields ξµ(x) satisfying the so-called
Killing equation

∇µξν +∇νξµ = 0 . (162)

The solutions ξµ(x) are called Killing vectors. They define infinitesimal change of coordinates
that leave the metric invariant, as recognized from eq. (153). They are symmetries of the
spacetimes and are called isometries.

For the case of flat spacetime, the Minkowski space, the Killing vector generate the Poincaré
group of isometries. In cartesian coordinates the Killing equations reduces to

∂µξν + ∂νξµ = 0 (163)

and are solved by the following vector fields

ξµ(x) = aµ aµ constant (spacetime translations)

ξµ(x) = ωµνx
ν ωµν = −ωνµ constant (Lorentz transformations) .

(164)

Flat spacetime is a maximally symmetric space in that it can be shown to admit the maximal
number of independent Killing vectors fields possible. Other maximally symmetric spacetimes
are the de Sitter space, which has a positive cosmological constant, and the anti de Sitter space,
which has a negative cosmological constant.
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8 Linearized Einstein’s equations

To study Einstein’s equations in a linearized approximation around flat spacetime, one sets the
metric as

gµν(x) = ηµν + hµν(x) (165)

and considers |hµν(x)| � 1. Then, in the linearized approximation one may raise and lower
indices with the Minkowski metric

hµν = ηµαηνβhαβ (166)

and define the “trace” of hµν as
h = ηµνhµν . (167)

Then, one may compute at the linear order in hµν

gµν(x) = ηµν − hµν(x) , g = | det gµν | = 1 + h ,
√
g = 1 +

1

2
h (168)

The Christoffel symbols linearize as

Γρµν =
1

2
ηρσ(∂µhνσ + ∂νhµσ − ∂σhµν) =

1

2
(∂µhν

ρ + ∂νhµ
ρ − ∂ρhµν) , (169)

the Riemann tensor as

Rµν
ρ
σ = ∂µΓρνσ − ∂νΓρµσ + .... =

1

2
∂σ(∂µhν

ρ − ∂νhµρ)−
1

2
∂ρ(∂µhνσ − ∂νhµσ) (170)

and the Ricci tensor

Rνσ = Rµν
µ
σ =

1

2
(∂ν∂

µhσµ + ∂σ∂
µhνµ − ∂ν∂σh−�hνσ) (171)

where we now use the symbol � = ∂µ∂µ = ηµν∂µ∂ν for the d’Alembertian in flat spacetime.
Then, Einstein’s equations in vacuum, see eq. (147), take the linearized form

�hµν + ∂µ∂νh− ∂µ∂σhσν − ∂ν∂σhσµ = 0 . (172)

One can verify that they are gauge invariant under a gauge symmetry: the gauge symmetry
(153) simplifies at lowest order in hµν to

δhµν = ∂µξν + ∂νξµ (173)

where the four components of ξµ are arbitrary functions, and one may verify that eqs. (172)
are invariant under them. These symmetries can be used to set four gauge-fixing conditions,
that may be taken to be the linearized harmonic (De Donder) gauge

∂σhσµ =
1

2
∂µh (174)

which simplifies Einstein’s equations to

�hµν = 0 (175)

and support plane wave solutions (gravitational waves). It can be shown that only two inde-
pendent polarizations of the gravitational waves exist, just like the electromagnetic waves.
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Having fixed a gauge to remove the gauge redundancy, one may wonder if there are left-over
gauge symmetries that do not modify the harmonic gauge condition (174). These residual gauge
symmetries do exist and correspond to transformations with functions ξµ that satisfy �ξµ = 0.
Let us verify this statement. If we have a configuration hµν that satisfies (174), let us perform
a gauge transformation to obtain the configuration

h′µν = hµν + ∂µξν + ∂νξµ (176)

and verify that it satisfies

∂µh′µν = ∂µ(hµν + ∂µξν + ∂νξµ)

= ∂µhµν + �ξν + ∂ν∂
µξµ =

1

2
∂µh+ �ξν + ∂ν∂

µξµ

=
1

2
∂µh

′ + �ξν .

(177)

Thus, also h′µν satisfies the harmonic gauge if �ξν = 0.
Keeping the source term in the equations, as in (146), the wave equation in the De Donder

gauge takes the form
�hµν = −16πGSµν (178)

where Sµν =
(
Tµν − 1

2
gµνT

λ
λ

)
|gµν=ηµν is the source term obtained from the “matter” energy-

momentum tensor in flat space.

8.1 Electromagnetic waves and physical polarizations

First, let us review the case of electromagnetic waves and show that they have only two degrees
of freedom, i.e. the two possible independent polarizations of the waves. We know that the
introduction of the four-potential Aµ solves half of the Maxwell equations. The remaining ones
in vacuum take the form

∂µFµν = ∂µ(∂µAν − ∂νAµ) = �Aν − ∂ν(∂µAµ) = 0 (179)

and are gauge invariant under
δAµ = ∂µθ (180)

with θ an arbitrary function of spacetime. The gauge freedom allows to select the Lorenz gauge
∂µAµ = 0. In this gauge, the equations simplify to

�Aµ = 0

∂µAµ = 0 .
(181)

Plane-wave solutions are found using a plane-wave ansatz of the form

Aµ(x) = εµ(k) eik·x + c.c. (182)

with an arbitrary wave vector kµ and arbitrary polarization εµ(k) depending on the wave vector

kµ. The exponent contains the Lorentz invariant phase k ·x = kµx
µ = ηµνk

µxν = −k0x0 +~k ·~x.
The notation c.c. stands for complex conjugation and makes the solution real. Plugging this
ansatz into the equations (181), one finds a solution when

kµkµ = 0 , kµεµ(k) = 0 . (183)

23



Thus, only three polarizations εµ(k) are possible. However, one of these polarizations is not
physical. It is the one with εµ(k) ∼ kµ. It does not carry any electric and magnetic fields. It
corresponds to a residual gauge transformation of the empty state Aµ = 0, and therefore it is
gauge equivalent to the empty state. This residual gauge transformation has the form given in
(180) with

θ(x) ∼ eik·x (184)

that satisfies �θ(x) = 0, so to maintain the Lorenz gauge condition. For such a reason it is
called residual gauge transformation. This gauge transformation gives

δAµ = ∂µθ ∼ ikµ e
ik·x (185)

and shows that the polarization εµ(k) ∼ kµ is not physical: it is gauge equivalent to zero. Only
two physical polarizations remain.

Let us exemplify this by considering the motion along the z axis. We can take

kµ = (k0, ~k) = (ω, 0, 0, ω) (186)

which solves kµkµ = 0 and produces the phase eik·x = eiω(z−t). The two expected polarizations
can be taken as

ε1µ = (0, 1, 0, 0)

ε2µ = (0, 0, 1, 0)
(187)

which satisfy
kµεiµ = 0 , εiµ 6= αkµ . (188)

The third independent polarization can be taken as the longitudinal polarization given by

εlongµ = (1, 0, 0, 1) =
1

ω
kµ . (189)

This polarization is not physical as it corresponds to a gauge transformation of the vacuum
state Aµ = 0, i.e.

A′µ = ∂µθ = εlongµ eik·x θ = − i
ω
eik·x (190)

where the function θ satisfies �θ = 0 because k2 = 0. Being gauge equivalent to Aµ = 0, it has
a vanishing field strength Fµν = 0. In particular, it does not carry energy and momentum as
the energy-momentum tensor vanishes for vanishing field strength, Tµν = 0.

Considering for example the solution with ε1µ, plugging it into (182), and multiplying with
an arbitrary amplitude A0 one finds

~A = A0 cos(ωz − ωt) x̂

~E = −∂
~A

∂t
= E0 sin(ωz − ωt) x̂

~B = ~∇× ~A = B0 sin(ωz − ωt) ŷ

(191)

where E0 = B0 = ωA0, and x̂, ŷ, ẑ the usual unit vectors.
The above plane waves do not carry angular momentum. Plane waves carrying angular

momentum are obtained using the circular polarization defined by

ε±µ = ε1µ ± iε2µ . (192)

They are also said to correspond to the helicity h = ±1, as in a quantum interpretation they
are related to photons carrying angular momentum ±~ along the direction of motion (helicity),
and with a wavefunction of the form

Aµ(x) = ε±µ (k)eikνx
ν

= ε±µ (k)e
i
~pνx

ν

(193)

where pµ = ~kµ is the 4-momentum of the photon.
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8.2 Gravitational waves and physical polarizations

We can now consider in a similar way the gravitational waves. We have seen that they satisfy
the equations

�hµν = 0 (194)

∂µhµν =
1

2
∂νh (195)

where the second one corresponds to the harmonic gauge. Plane-wave solutions can be found
using the ansatz

hµν(x) = εµν(k) eik·x + c.c. (196)

with kµ an arbitrary wave vector and εµν an arbitrary polarization tensor which we take to
depend on the wave vector kµ. The exponent contains the Lorentz invariant phase k · x =
kµx

µ = ηµνk
µxν = −k0x0 + ~k · ~x. The notation c.c. stands for complex conjugation and makes

the solution real. Plugging this ansatz into the equations (194) and (195), one finds a solution
if

kµkµ = 0 , kµεµν(k) =
1

2
kνε

σ
σ . (197)

The second condition amounts to four linear relations between the 10 components of the po-
larization tensor. Thus, only six independent polarizations εµν(k) are possible. Four of these
six polarizations are not physical, namely the ones with εµν(k) ∼ kµεν(k) + kνεµ(k) for some
εµ(k). They correspond to gauge transformations of the vanishing configuration hµν(x) = 0. It
has the form given in (173), but with ξµ of the form

ξµ(x) ∼ εµ(k)eik·x (198)

so that it satisfies �ξµ(x) = 0. Thus, it does not ruin the harmonic gauge condition (195). It
reads

δhµν = ∂µξν + ∂νξµ ∼ i(kµεν(k) + kνεµ(k)) eik·x (199)

and shows that these types of polarizations are not physical. Note that these unphysical
polarizations satisfy the second equation in (197). They are gauge equivalent to zero and
therefore can be removed by appropriate gauge transformations. The conclusion is that only
two physical polarizations remain.

Let us exemplify this by considering the motion along the z axis. We take

kµ = (k0, ~k) = (ω, 0, 0, ω) (200)

which solves kµkµ = 0 and produces the phase eik·x = eiω(z−t). The two expected polarizations
can be chosen as (using the previous em polarizations)

ε⊕µν = ε1µε
1
ν − ε2µε2ν

ε⊗µν = ε1µε
2
ν + ε2µε

1
ν

(201)

which indeed satisfy
kµεiµν = 0 , εiµν 6= α(kµεν + kνεµ) (202)

for i = (⊕,⊗), i.e.

εµν =


0 0 0 0
0 ε11 ε12 0
0 ε12 −ε11 0
0 0 0 0

 . (203)
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Considering for example the solution with ε⊕µν , plugging it into (196), and multiplying with
an arbitrary amplitude h0 one finds

hµν(z − t) = h0 cos(ωz − ωt) ε⊕µν (204)

that inserted into the linearized metric gµν(x) gives the line element

ds2 = (ηµν + hµν(z − t))dxµdxν

= −dt2 + (1 + h11(z − t))dx2 + (1− h11(z − t))dy2 + dz2
(205)

which is interpretable as deforming periodically invariant lengths as in the figure 1 (from [2]).

Figure 1: Polarization ε⊕µν

The polarization ε⊗µν , does much of the same, but rotated by 45 degrees, see Fig. 2

Figure 2: Polarization ε⊗µν

9 The Schwarzschild solution

Finding exact solutions to Einstein’s field equations is very difficult. One strategy is to use
conjectured symmetries of possible solutions and use the symmetries to restrict the functional
form of the metric that is expected to solve the equations. This simplifies Einstein’s equations,
which become more tractable and hopefully solvable.

This strategy can be adopted to find the Schwarzschild solution. The Schwarzschild metric
is obtained by asking for a static and isotropic solution of the Einstein equations in vacuum.
This situation is realized outside a source that is supposed to be of spherical symmetry and
static, like a non-rotating planet. To implement the required symmetries, time translation and
rotational invariances, one assumes the existence of coordinates xµ = (t, ~x) such that the metric
takes the form

ds2 = −F (r) dt2 + 2E(r) dt ~x · ~dx+D(r) (~x · d~x)2 + C(r) d~x · d~x (206)

where r =
√
~x · ~x. This is the most general ansatz consistent with the symmetries. The form

of the metric can be further simplified by making changes of coordinates. First of all, one may
pass to spherical coordinates (r, θ, φ) for ~x, and using ~x · ~dx = rdr one rewrites

ds2 = −F (r) dt2 + 2E(r)r dtdr +D(r)r2dr2 + C(r) [dr2 + r2dθ2 + r2 sin2 θ dφ2] , (207)
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where we have used that the three-dimensional flat metric in radial coordinates takes the form

ds2(3) ≡ d~x · d~x = dr2 + r2dθ2 + r2 sin2 θ dφ2 = dr2 + r2dΩ2 (208)

with dΩ2 the metric on the two-dimensional sphere S2 with unit radius

dΩ2 = dθ2 + sin2 θ dφ2 . (209)

Then, one may redefine the time by

t→ t′ = t+ Φ(r) (210)

so that

dt′ = dt+
dΦ(r)

dr
dr (211)

and the first two terms inside ds2 become

ds2 = −F (r)
(
dt′ − dΦ(r)

dr
dr
)2

+ 2E(r)r
(
dt′ − dΦ(r)

dr
dr
)
dr + . . . (212)

that rearranges to

ds2 = −F (r) dt′2+2
[
rE(r)+F (r)

dΦ(r)

dr

]
dt′dr−

[
F (r)

(dΦ(r)

dr

)2
+2rE(r)

dΦ(r)

dr

]
dr2+. . . (213)

Now one can fix the function Φ(r) to satisfy

dΦ(r)

dr
= −rE(r)

F (r)
(214)

so that the mixed term dt′dr vanishes. Then, the remaining part takes the form

ds2 = −F (r) dt′2 +G(r)dr2 + C(r) [dr2 + r2dθ2 + r2 sin2 θ dφ2] (215)

where

G(r) = r2
(
D(r) +

E2(r)

F (r)

)
. (216)

Now one redefines the radius r → r′ by requiring that

r′ 2 = C(r)r2 (217)

so that r′2 is identified with the radius of a sphere S2 and leads to the relation

2r′dr′ =
(

2rC(r) + r2C ′(r)
)
dr = 2rC(r)

(
1 +

rC ′(r)

2C(r)

)
dr (218)

implying

dr2 =
dr′2

C(r)
(

1 + rC′(r)
2C(r)

)2 (219)

In terms of the new radius, one gets the so-called standard form of the metric

ds2 = −B(r′) dt′ 2 + A(r′)dr′ 2 + r′ 2(dθ2 + sin2 θ dφ2) (220)
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with
B(r′) = F (r)

A(r′) =
(

1 +
G(r)

C(r)

)(
1 +

rC ′(r)

2C(r)

)−2
.

(221)

Dropping the primes, one has found the static and isotropic metric in the standard form

ds2 = −B(r) dt2 + A(r)dr2 + r2(dθ2 + sin2 θ dφ2) . (222)

Einstein’s equations

The metric in the standard form can be inserted into the Einstein’s equations which simplify
dramatically. From (222), we see that the metric tensor gµν can be written as

gµν =


−B(r) 0 0 0

0 A(r) 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 (223)

and its inverse gµν

gµν =


− 1
B(r)

0 0 0

0 1
A(r)

0 0

0 0 1
r2

0
0 0 0 1

r2 sin2 θ

 . (224)

We can now compute the components of the connection Γλµν .
Starting with the ones in Γrµν , we compute

Γrrr =
1

2
grµ(2∂rgrµ − ∂µgrr) =

1

2
grr∂rgrr

=
1

2A(r)
∂rA(r) =

A′(r)

2A(r)

(225)

where the prime indicates the derivative with respect to r. Note that, in the calculation,
the index r is fixed, while µ runs over the values (t, r, θ, φ). Similarly, one finds the other
nonvanishing components and obtains the following list

Γrrr =
A′(r)

2A(r)
, Γrθθ = − r

A(r)
, Γrφφ = −r sin2 θ

A(r)
, Γrtt =

B′(r)

2A(r)
. (226)

Continuing this way, one finds

Γθrθ = Γθθr =
1

r
, Γθφφ = − sin θ cos θ (227)

Γφrφ = Γφφr =
1

r
, Γφφθ = Γφθφ = cot θ (228)

Γttr = Γtrt =
B′(r)

2B(r)
. (229)

At this stage, one must compute the non-vanishing components of the Ricci tensor Rµν

given by
Rµν = Rλµ

λ
ν = ∇λΓ

λ
µν −∇µΓλλν

= ∂λΓ
λ
µν − ∂µΓλλν + ΓλλσΓσµν − ΓλµσΓσλν .

(230)
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A direct calculation delivers

Rrr = −B
′′

2B
+

1

4

B′

B

(
A′

A
+
B′

B

)
+

1

r

A′

A

Rθθ = 1− r

2A

(
B′

B
− A′

A

)
− 1

A

Rφφ = sin2 θ Rθθ

Rtt =
B′′

2A
− 1

4

B′

A

(
A′

A
+
B′

B

)
+

1

r

B′

A
.

(231)

Thus, the independent equations to be solved are

Rrr = Rθθ = Rtt = 0 . (232)

To solve them, one notices that

Rrr

A
+
Rtt

B
=

1

rA

(
A′

A
+
B′

B

)
= 0 . (233)

This implies
A′

A
+
B′

B
= 0 → A′B +B′A = 0 → AB = constant (234)

and assuming that A(r) and B(r) both tend to 1 for r →∞, we get

A =
1

B
. (235)

At this stage, from Rθθ = 0, one finds

Rθθ = 1−B′r −B = 0 → ∂r(rB) = 1 → rB = r + constant (236)

and thus

B(r) = 1 +
constant

r
. (237)

From the Newtonian limit −g00 = 1 − 2GM
r

= B(r), one finds the constant to be −2GM , so
that

B(r) = 1− 2GM

r
. (238)

This, leads to the Schwarzschild solution

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1
dr2 + r2(dθ2 + sin2 θ dφ2) . (239)

The same solution can be obtained by relaxing the hypothesis of time invariance (staticity).
This is captured by Birkhoff’s theorem, that states that any spherically symmetric solution of
the vacuum field equations must be static and asymptotically flat. This theorem guarantees
that the assumption of staticity may be dropped, and still the exterior solution for the spacetime
metric outside a spherical, nonrotating, gravitating body must be given by the Schwarzschild
metric.

A striking feature of the Schwarzschild solution is that the metric presents singularities in
the strong field regime at r = 2GM and r = 0. It is in general not obvious to determine the
nature of the singular behavior: it could be due to i) a breakdown of the coordinate system
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used to describe the solution, which would be otherwise nonsingular, ii) a true singularity of the
spacetime as captured by some scalar observable in the curvature. We note that the singular
behavior at rS = 2GM numerically takes the value

rS =
2GM

c2
= 3

M

M�
km (240)

which for ordinary bodies, like planets or stars, is well inside their physical radius (e.g. r� ∼
7 105 km). The Einstein equations in vacuum are no longer valid inside the physical radius,
as one must modify the Einstein equations by taking considering the nonvanishing energy-
momentum tensor of the constituents of the body so that the solution will be modified inside
the physical radius.

For a proton, the Schwarzschild radius equals rS = 2Gmp ∼ 10−50cm, much smaller than
the proton radius rp ∼ 10−13cm = 1 fm.

However, a spherical body might go under a gravitational collapse, that may expose the
singular points which must therefore be interpreted physically. It turns out that the point
r = rS, the Schwarzschild radius, is not a singular point of the geometry. For example, the
scalar quantity

RµνλρR
µνλρ =

48(GM)2

r6
(241)

does not show any singular behavior at r = rS. This point r = rS indicates the location of the
so-called event horizon, a two-dimensional null surface. It is a surface of infinite red-shift for
an observer at rest in these coordinates.

On the other hand, the above curvature scalar diverges at r = 0, which is therefore a true
singularity of the Schwarzschild spacetimes.

Finally, let us mention that, in the presence of a cosmological constant Λ, the Schwarzschild
solution is modified to

ds2 = −
(

1− 2GM

r
− Λr2

3

)
dt2 +

(
1− 2GM

r
− Λr2

3

)−1
dr2 + r2(dθ2 + sin2 θ dφ2) . (242)

Now, on top of the length scale of the event horizon rS = 2GM , there appears a cosmological
length scale given by

rC =
1√
Λ
. (243)

The cosmological constant Λ parameterizes the effects of the vacuum energy of the universe,
related to the concept of dark energy. Its smallness makes the cosmological length scale rC
very big, of the order of 1026 m, the radius of the visible universe. There is a range rS < r < rC
for the coordinate r that makes the extended solution approximately flat. In practice, this
additional length scale is neglected, and much studies are devoted to the original Schwarzschild
solution that asymptotically becomes a flat spacetime. That is, the radius rC is effectively sent
to infinity, equivalent to setting Λ = 0.

10 Black holes

The Schwarzschild solution indicates the existence of an event horizon and leads to the concept
of a black hole. The recommended treatment is the one presented in [2], see chapter 8, in
particular pages 324–342.

Let us present here a few remarks. We first wish to discuss in more details the singularities
at r = 2GM and r = 0. In general, it is not an easy task to determine the true nature
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of eventual singularities in the metric. As already mentioned, they may be artifacts of the
coordinate systems or else could indicate a true singularity of spacetime.

Let us present two examples that help in building intuition.
Consider the two-dimensional metric

ds2 = − 1

t4
dt2 + dx2 (244)

with coordinate ranges x ∈ R and t > 0. There is a singularity at t = 0. However, a change of
the coordinate t→ t′ = 1

t
leads to dt′ = − 1

t2
dt and brings the metric into the form

ds2 = −dt′2 + dx2 (245)

that is recognized as the flat metric of Minkowski spacetime. Thus, the singularities are elimi-
nated. The original coordinates are seen to correspond to only a portion of the Minkowski space
and the singular points at t = 0 (the x axis of the coordinate frame) are seen as corresponding
to the t′ → ∞ part of Minkowski space. In the new (t′, x) coordinates, one may extend the
spacetime by letting −∞ < t′ <∞. This makes the space geodesically complete, that is a space
in which all geodesics extend to arbitrarily large values of their affine parameter, see fig. 3.

no	singularity

space	extended	to	make
it	geodesically	complete

singular	line

Figure 3: Flat space in different coordinates described in example 1.

A second example is the so-called Rindler spacetime. It is defined by the metric

ds2 = −x2dt2 + dx2 (246)

with coordinate ranges t ∈ R and x > 0. There is a singularity at x = 0. More precisely, the
determinant of the metric vanishes and the inverse metric is singular at x = 0. One may check
that geodesics terminate with a finite length at x = 0, so that the space is not geodesically
complete. On the other hand, the calculation of curvature scalars does not signal any bad
behavior at x = 0. In fact, all components of the Riemann tensor vanish, suggesting that one
is dealing with a portion of Minkowski space.

Let us look for a change of coordinates that makes the true nature of the Rindler spacetime
manifest. One could proceed with a trial-and-error method. A more satisfactory geometrical
approach is to consider geodesics that head toward the singularity, and use the affine parameters
of the geodesics as coordinates (like the Cartesian coordinates, that are built from geodesics).
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In two dimensions, it is useful to use null coordinates. For the two-dimensional Minkowski
spacetime with Cartesian coordinates (t, x) and metric

ds2 = −dt2 + dx2 (247)

the null coordinates (u, v) are defined by{
u = t− x
v = t+ x

(248)

with inverse transformation given by {
t = 1

2
(v + u)

x = 1
2
(v − u) .

(249)

In these new coordinates, the metric takes the form

ds2 = −du dv . (250)

The null coordinates are also called light-cone coordinates, see fig. 4.

Figure 4: Minkowski space with Cartesian (t, x) and null (u, v) coordinate frames

Similarly, let us look for null geodesics in Rindler space. A geodesic is described the the
functions xµ(λ) where λ is an affine parameter. We denote by ẋµ = dxµ

dλ
the tangent vector to

the geodesic. The geodesic satisfies the equation D
dλ
ẋµ = 0. Considering the Rindler metric

(246), we impose that the tangent vector be lightlike so that the corresponding geodesic is a
null geodesic. This leads to the equation

gµν ẋ
µẋν = −x2ṫ2 + ẋ2 = 0 . (251)

Eliminating the affine parameter λ from the equation gives(
dt

dx

)2

=
1

x2
→ dt = ±dx

x
(252)

which integrates to
t = ± lnx+ constant . (253)

32



This suggests the introduction of “null coordinates” as the constants in (253) that parametrize
the different null geodesics, namely {

u = t− lnx

v = t+ lnx .
(254)

In the (u, v) coordinates, the metric becomes

ds2 = −ev−u du dv . (255)

This transformation does not achieve the goal of analyzing the singularity at x = 0, as the
coordinates u and v diverge at x = 0, as seen from eq. (254). However, now one can further
reparametrize the coordinates to obtain new coordinates (U, V ) defined by{

U = −e−u

V = ev
(256)

which puts the metric in the form
ds2 = −dUdV . (257)

This metric may be directly compared with (250) and recognized to be the metric of Minkowski
spacetime in null coordinates. Thus, setting{

U = T −X
V = T +X

with inverse

{
T = 1

2
(V + U)

X = 1
2
(V − U)

(258)

leads to the standard Minkowski metric

ds2 = −dT 2 + dX2 . (259)

The original coordinates (t, x) are given in terms of the final coordinates (T,X) by{
x = (X2 − T 2)1/2

t = tanh−1 T
X

(260)

with inverse transformation {
T = x sinh t

X = x cosh t .
(261)

We see that a fixed x we have a branch of a hyperbola in the T − X plane described by
X2 − T 2 = x2. Let us verify these expressions once more by following the various changes of
variables. Going backward, we compute starting from (258)

T =
1

2
(V + U) =

1

2
(ev − e−u) =

1

2
(et+lnx − e−t+lnx) =

1

2
x(et − e−t) = x sinh t (262)

and similarly

X =
1

2
(V − U) =

1

2
(ev + e−u) =

1

2
(et+lnx + e−t+lnx) =

1

2
x(et + e−t) = x cosh t . (263)

The (T,X) coordinates are shown in fig. 5, which is taken from ref. [3]
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Figure 5: Rindler space

The Rindler space is the wedge X > |T | of the Minkowski space, labeled as region I in fig.
5. The coordinate lines at x = constant are interpreted as the worldlines of observers that are
at rest in Rindler coordinates. These worldlines are those of accelerated observers once seen
from the Cartesian coordinate frame, and they corresponds to branches of hyperbolae.

The singularities at x = 0 coincide with part of the light cone which is depicted in fig. 5, as
for x = 0 the hyperbola degenerates to the light cone. It corresponds to the location of an event
horizon for the Rindler observers, i.e. those observes that are at rest in Rindler coordinates.
As said, these observers perform a hyperbolic accelerated motion in the Cartesian coordinate
frame. They cannot access the region beyond the horizon. The event horizon is a surface of
infinite red shift for Rindler observers. Note that:
i) Rindler observers cannot receive signals from events with T ≥ X (region II of fig. 5)
ii) Rindler observers cannot send signals to events with T ≤ −X (region III of fig. 5).

There is nothing singular in the Rindler geometry: Rindler space is that portion of Minkowski
space accessible to observers that perform a hyperbolic accelerated motion in the Cartesian co-
ordinate frame.

Of course, a Rindler observer could decide to stop accelerating (so it ceases to be a “Rindler
observer”) and thus be able to cross the horizon, see figure 6.

Schwarzschild metric and the black hole

We can now proceed to analyze the Schwarzschild metric that in Schwarzschild coordinates
reads

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1
dr2 + r2(dθ2 + sin2 θ dφ2) (264)

We have already noted that the singularity at r = rS ≡ 2GM is not a true singularity of the
Schwarzschild spacetime. It gives the location of a surface of infinite redshift. A static observer
at r > rS, for example, one that is sitting at very big values of r so that he/she is in a portion
of space that is almost flat, will not be able to see any object crossing the surface at r = rS:
the static Schwarzschild observer measures an infinite amount of time for any object headed to
r = rS to reach it. This surface is named event horizon.

Of course, moving objects can reach the event horizon and cross it, but the static Schwarzschild
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Figure 6: Rindler space

observer cannot see this fact happening. Moreover, once an object enters the event horizon, it
cannot escape anymore and is bound to reach the singularity at r = 0 in a finite proper time.
This defines a black hole, the region inside the event horizon from which nothing can escape
because of the strong gravitational attraction. At the singularity, the worldline of any particle
that crossed the horizon stops. The Schwarzschild spacetime is not geodesically complete. Note
that inside the event horizon, the role of t and r are reversed: t turns into a spacelike coordinate
as gtt = −(1− rS

r
) becomes positive, while r turns into a timelike coordinate as grr = (1− rS

r
)−1

becomes negative.
There is classical analogy for the black hole. In Newtonian gravity, a non-relativistic particle

of mass m near a planet of mass M has a potential energy given by V = −GMm
r

, with r the
distance of the particle from the planet. The kinetic energy of the particle has the usual form
T = 1

2
mv2, so that the particle can escape to r =∞ if it has enough kinetic energy to overcome

the negative potential energy. There is an escape velocity which is independent of the particle’s
mass

1

2
mv2 =

GMm

r
→ v2 =

2GM

r
. (265)

Applying this to a light particle with velocity v = c = 1 (in our units), we get a minimal radius
from which light can escape

r = 2GM . (266)

Planets with a smaller radius would appear black because light cannot escape the planet’s
gravitational attraction (Michell 1784, Laplace 1796). This classical analogy gives the correct
Schwarzschild radius, but the physical picture of how the light ray behaves is different in general
relativity.

To appreciate better the structure of the Schwarzschild solution, let us study the null
geodesics travelled by light rays. They define the light cones at the various points. We consider
only radial light signals (i.e. those ones with fixed θ and φ coordinates). They must satisfy
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331 8.2 The black hole and its horizon
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Fig. 8.3 The forward light cones near
and inside a black hole. As
r → ∞, the light cone
assumes its usual shape and
direction; that is,
d r /d t = ±1. The curve
ABBC is the worldline of an
ingoing light signal.

The existence of an event horizon at r = rS is obvious from inspection of the light
cones in Fig. 8.3. Any kind of signal must necessarily travel in a spacetime direction
that lies within a light cone. Since the light cones in the black-hole region are oriented
toward r = 0, any signal in this region is unavoidably pulled toward decreasing values
of r and can never leave the black hole.

Note that the light cones are tangent to the surface r = rS (indicated by the dashed
line in Fig. 8.3); this means that, viewed in spacetime, the horizon is a null surface.
This is a general property of event horizons, since a light signal that starts exactly on a
horizon and is aimed in the outward direction is sandwiched between those signals just
outside of the horizon (which escape outward) and those just inside the horizon (which
fall inward); the light signal therefore propagates neither out nor in – it hovers in place
forever, and thereby indicates that the place at which it is hovering is a null surface.
Such a hovering light signal on the horizon of a black hole should not be confused with
a signal in a circular orbit around the black hole; the hovering signal has no circular
motion, and it is completely stationary.

Although signals cannot emerge from the black hole, they can enter it freely. The
curve in Fig. 8.3 is the worldline of a light signal that travels inward. This curve is
obtained by integrating Eq. (8.13). The signal follows the worldline AB to t = ∞, and
then it follows the worldline BC to r = 0. As measured in t, r coordinates, the signal
velocity tends to zero as r → rS , and the signal takes an infinite t time to reach r = rS .

Figure 7: Light cones in the Schwarzshild coordinates

ds2 = 0. Denoting rS = 2GM we have

ds2 = −
(

1− rS
r

)
dt2 +

(
1− rS

r

)−1
dr2 = 0 (267)

that implies
dr

dt
= ±

(
1− rS

r

)
(268)

which identifies the directions of the light cones. They are depicted in fig. 7, taken from [2].
Note that a photon near r = rS, say at r = rS + ε, with infinitesimal ε > 0, has a velocity

that tends to zero

dr

dt
= ±

(
1− rS

r

)
= ±

(
1− rS

rS + ε

)
≈ ± ε

rS
−→ 0 . (269)

In particular, a radially moving photon stands still on the surface horizon.
As mentioned, inside the horizon, r and t exchange their roles. All signals are lead inevitably

to hit the singularity at r = 0, as indicated by the light cones depicted in fig. 7.

Kruskal extension

The Kruskal coordinates are a useful set of coordinates that are not singular at the event
horizon. They can be used to find the maximal extension of the Schwarzschild geometry. In
such coordinates, all geodesics either extend to infinity in both directions or initiate/end up at
a singularity. The picture emerging is the one shown in fig. 8, taken from [3].

The Kruskal coordinates do not show explicitly the staticity of the external part of the black
hole. They are useful to study the strong field region, while the asymptotically flat region is
better appreciated in the original Schwarzshild coordinates.
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Figure 8: The Kruskal extension of Schwarzschild spacetime

Let us describe Kruskal coordinates , using the intuition developed in the treatment of the
Rindler space. Let us discuss the relevant t, r part of the coordinates and look for radial null
geodesics whose tangent vectors ẋµ(λ) satisfy (we now set G = 1)

gµν ẋ
µẋν = −

(
1− 2M

r

)
ṫ2 +

(
1− 2M

r

)−1
ṙ2 = 0 (270)

in a way analogous to eq. (251) of the Rindler case. Eliminating the affine parameter λ from
the equation gives(

dt

dr

)2

=

(
1− 2M

r

)−2
→ dt = ±

(
1− 2M

r

)−1
dr (271)

which integrates to
t = ± r∗ + constant (272)

where the “Regge-Wheeler tortoise coordinate” r∗ is defined by

r∗ = r + 2M ln
( r

2M
− 1
)

(273)

which indeed satisfies
dr∗
dr

=

(
1− 2M

r

)−1
. (274)

We can thus define the null coordinates u, v by{
u = t− r∗
v = t+ r∗

(275)

in analogy with eq. (248), and discover that the metric becomes

ds2 = −
(

1− 2M

r

)
du dv . (276)

where r must be viewed as a function of u and v, defined implicitly by

r + 2M ln
( r

2M
− 1
)

= r∗ =
1

2
(v − u) . (277)

37



Using this last equation we rewrite the metric (276) as

ds2 = −2Me−r/2M

r
e(v−u)/4Mdu dv . (278)

where we have factored the metric into a piece, e−r/2M/r, which is non singular as r → 2M
(i.e. when u → ∞ and v → −∞) times a piece with a simple u, v dependence. Comparison
with the Rindler case suggests the use of new coordinate U and V{

U = −e−u/4M

V = ev/4M
(279)

which puts the metric in the form

ds2 = −32M3e−r/2M

r
dU dV . (280)

Now, there is no longer a singularity at r = 2M (i.e. at U = 0 and V = 0) and thus we can
extend the Schwarzschild spacetime solution by allowing U and V to take all possible values
compatible with r > 0. The final transformation{

T = 1
2
(U + V )

X = 1
2
(V − U)

(281)

leads to

ds2 = −32M3e−r/2M

r
(−dT 2 + dX2) + r2(dθ2 + sin2 θ dφ2) . (282)

The relation between the old and new coordinates is given by{(
r

2M
− 1
)
er/2M = X2 − T 2

t
2M

= ln
(
X+T
X−T

)
= 2 tanh−1 T

X
.

(283)

The metric in these Kruskal coordinates is depicted in fig. 8.
Note that the parts III and IV of the Kruskal extension of Schwarzshild spacetime are not

expected to be physical.
Region III contains the so-called “white hole”. Region IV is asymptotically flat and it

may be interpreted as a different universe. Alternatively, it could be regarded as a region of
our universe, but it is located outside the light-cone of region I, so communication between
these two regions is impossible. Astronauts from these two regions could cross their respective
horizons, meet briefly, and then end up in the singularity. These two regions are joined by the
so-called wormhole, sometimes named Einsten-Rosen bridge, the geometry that can be observed
by looking at the diagram in fig. 8. Nowaday, the main consensus is that regions III and IV
of the Kruskal extension of Schwarzshild spacetime are not expected to be physical, but some
researcher continue to analyze their possible implications.

Black holes can be formed by collapsing matter, and some picture of the spacetime diagrams
are presented in figures 9 and 10, also taken from the textbook [3]. From this perspective, region
III and IV are not relevant, they are “covered up” by the infalling matter and thus replaced by
a normal spacetime region.
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