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Path integrals for fermions
and supersymmetric quantum mechanics

(Appunti per il corso di Fisica Teorica 2 – 2013/14)

Fiorenzo Bastianelli

Fermions at the classical level can be described by Grassmann variables, also known as
anticommuting numbers or fermionic variables. These variables allow to define “classical”
models whose quantization produce the degrees of freedom associated to spin. Often, these
model are called “pseudoclassical”, since the description of spin at the classical level remains
a formal construction, as spin vanish for ~→ 0. More generally, Grassmann variables produce
degrees of freedom satisfying a Pauli exclusion principle upon quantization.

In worldline approaches to quantum field theories, one may describe relativistic point parti-
cles with spin by their worldline coordinates giving their position in space-time, and Grassmann
variables to account for their additional spin degrees of freedom. From the worldline point of
view the Grassmann variables have equations of motion that are first order in time. They
satisfy the equivalent of a Dirac equation in one dimension, as the worldline can be considered
as a 0+1 dimensional space-time with the only dimension corresponding to the time coordinate
(space is just a point). They can be interpreted as worldline fermions as they obey the Pauli
exclusion principle. The latter arises as one quantizes these fermions with anticommutators.
Apart form that, there is no concept of spin in 0 + 1 dimensions (there is no rotation group in
a zero dimensional space). In this chapter we study the path integral quantization of models
with Grassmann variables, and refer to them as path integrals for fermions, or fermionic path
integrals. In a hypercondensed notation the resulting formulae describe the quantization of a
Dirac field in higher dimensions as well.

We start introducing Grassmann variables and develop canonical quantization for mechan-
ical models containing Grassmann variables. Then we derive a path integral representation of
the transition amplitude for fermionic systems using a suitable definition of fermionic coherent
states. To exemplify the use of Grassmann variables, we present a class of supersymmetric me-
chanical models. This allow us to introduce supersymmetry in one of its simplest realization.
As we shall see in later chapters, worldline supersymmetry is a guiding principle for describing
relativistic spinning particles. Eventually, we present the construction of the N = 2 and N = 1
superspaces. The latter is used in worldline descriptions of Dirac fields. Superspace is useful
for formulating theories in a manifestly supersymmetric way.

1 Grassmann algebras

A n-dimensional Grassmann algebra G = {θi} is formed by generators θi with i = 1, ..., n that
satisfy

θiθj + θjθi = 0 (1)

or equivalently, in terms of the anticommutator,

{θi, θj} = 0 . (2)
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In particular any fixed generator squares to zero

θ2
i = 0 (3)

suggesting already at the classical level the essence of the Pauli exclusion principle, according
to which one cannot put two identical fermions in the same quantum state. Physicists often
call these generators as anticommuting numbers.

One can multiply these generators and their products by real or complex numbers, and form
polynomials that define functions of the Grassmann variables. For example, for n = 1 there is
only one Grassmann variable θ and an arbitrary function is given by

f(θ) = f0 + f1θ (4)

where f0 and f1 are taken to be either real or complex numbers. Similarly, for n = 2 one has

f(θ1, θ2) = f0 + f1θ1 + f2θ2 + f3θ1θ2 . (5)

A term with θ2θ1 is not reported as it is not independent of θ1θ2, as θ2θ1 = −θ1θ2. Terms
with an even number of θ’s are called Grassmann even (or equivalently even, commuting, or
bosonic). Terms with an odd number of θ’s are called Grassmann odd (or equivalently odd,
anticommuting, or fermionic). Generic functions are always defined in terms of their Taylor
expansion, which contains a finite number of terms because of the Grassmann property. For
example, the exponential function eθ means just eθ = 1 + θ because θ2 = 0.

Derivatives with respect to Grassmann variables are very simple. As any function can be
at most linear with respect to a fixed Grassmann variable, its derivative is straightforward and
one has just to keep track of signs. Left derivatives are defined by removing the variable from
the left of its Taylor expansion: for example for the function f(θ1, θ2) given above

∂
L

∂θ1

f(θ1, θ2) = f1 + f3θ2 . (6)

Similarly, right derivatives are obtained by removing the variable from the right

∂
R

∂θ1

f(θ1, θ2) = f1 − f3θ2 (7)

where a minus sign emerges because one has first to commute θ1 past θ2. Equivalently, using
Grassmann increments δθ, one may write

δf = δθ
∂
L
f

∂θ
=
∂
R
f

∂θ
δθ (8)

which makes evident how to keep track of signs. If not specified otherwise, we use left derivatives
and omit the corresponding subscript.

Integration can be defined, according to Berezin, to be identical with differentiation∫
dθ ≡ ∂

∂θ
. (9)

This definition has the virtue of producing a translational invariant measure, that is∫
dθf(θ + η) =

∫
dθf(θ) . (10)
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This statement is easily proven by a direct calculation∫
dθf(θ + η) =

∫
dθ (f0 + f1θ + f1η) = f1 =

∫
dθf(θ) . (11)

Grassmann variables can be defined to be either real or complex. A real variable satisfies

θ̄ = θ (12)

with the bar indicating complex conjugation. For products of Grassmann variables the complex
conjugate is defined to include an exchange of their position

θ1θ2 = θ̄2θ̄1 . (13)

Thus the complex conjugate of the product of two real variables is purely imaginary

θ1θ2 = −θ1θ2 . (14)

It is iθ1θ2 that is real, as the complex conjugate of the imaginary unit carries the additional
minus sign to obtain a formally real object

iθ1θ2 = iθ1θ2 . (15)

Complex Grassmann variables η and η̄ can always be decomposed in terms of two real Grass-
mann variables θ1 and θ2 by setting

η =
1√
2

(θ1 + iθ2) , η̄ =
1√
2

(θ1 − iθ2) . (16)

These are the definitions that are most useful for physical applications, and remind for example
that real variables should become hermitian operators upon quantization.

Having defined integration over Grassmann variables, we consider in more details the gaus-
sian integration, which is at the core of fermonic path integrals. For the case of a single real
Grassmann variable θ the gaussian function is trivial, e−aθ

2
= 1, since θ2 = 0 as θ anticom-

mutes with itself. One needs at least two real Grassmann variables θ1 and θ2 to have a nontrivial
exponential function with an exponent quadratic in Grassmann variables

e−aθ1θ2 = 1− aθ1θ2 (17)

where a is either a real or complex number. With the above definitions the corresponding
“gaussian integral” is computed straghtforwardly∫

dθ1dθ2 e
−aθ1θ2 = a . (18)

Defining the antisymmetric 2× 2 matrix Aij by

A =

(
0 a
−a 0

)
(19)

one may rewrite the result of the Grassmann integration as∫
dθ1dθ2 e

− 1
2
θiA

ijθj = det
1
2A . (20)
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The square root of the determinant of an antisymmetric matrix A is often called the pfaffian,
and indicated by PfaffA. Note indeed that the determinant is always positive definite for real
antisymmetric matrices, and its square root is well defined (by analytic extensions also for
antisymmetric matrices with complex entries). It is easy to see that the above formula extends
to an even number n = 2m of real Grassmann variables, so that one may write in general∫

dnθ e−
1
2
θiA

ijθj = det
1
2A (21)

with the measure normalized as dnθ ≡ dθ1dθ2 . . . dθn. Indeed with an orthogonal transformation
one can skew-diagonalize the antisymmetric matrix Aij and put it in the form

0 a1

−a1 0
0 a2

−a2 0
.
.

0 am
−am 0


. (22)

The orthogonal transformation leaves the integration measure invariant and one immediately

gets the above result with det
1
2A = a1a2 · · · am.

Similarly, the determinant of a matrix Aij is obtained by gaussian integration over complex
Grassmann variables (ηi, η̄i) ∫

dnη̄dnη e−η̄iA
ijηj = detA (23)

where the measure is now defined by dnη̄dnη ≡ dη̄1dη1dη̄2dη2 . . . dη̄ndηn.
For applications to dynamical models and subsequent path integral quantization, one needs

infinite dimensional Grassmann algebras (n → ∞). Then one may use Grassmann valued
functions of time, i.e. θi  θ(t). For different values of t one has different generators of the
algebra, so that properties such as θ2(t) = 0 and θ(t1)θ(t2) = −θ(t2)θ(t1) hold. They may be
used to describe suitable mechanical systems.

2 Pseudoclassical models and canonical quantization

To gain some familiarity with the use of Grassmann numbers as dynamical variables let us
consider the example of the fermionic harmonic oscillator. This model contains the essence of all
fermionic systems, and is described by the complex functions ψ(t) and ψ̄(t) taking values in an
infinite dimensional Grassmann algebra (t denotes the time). The Grassmann property implies
generic relations like ψ(t)ψ(t) = 0, ψ(t)ψ(t′) = −ψ(t′)ψ(t), ψ̇(t)ψ̇(t) = 0, ψ(t)ψ̇(t) = −ψ̇(t)ψ(t),
etc., where we employed the standard notation for the time derivative ψ̇ = d

dt
ψ. These relations

can be used in extremizing an action, for testing the presence of symmetries, and so on.
The dynamics of the fermionic harmonic oscillator is fixed by the action

S[ψ, ψ̄] =

∫
dt L , L = iψ̄ψ̇ − ωψ̄ψ (24)
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which is formally real (up to boundary terms). The equation of motion is obtained by extrem-
izing the action and easily solved

iψ̇ − ωψ = 0 =⇒ ψ(t) = ψ0 e
−iωt (25)

where ψ0 a suitable initial datum. This equation of motion may be called the Dirac equation
in a 0+1 dimensional space time. Indeed one may rewrite it as (γ0∂0 +ω)ψ = 0, with γ0 = −i,
x0 = t, and ω playing the role of the Dirac mass.

Canonical quantization is obtained by considering the hamiltonian structure of the model.
We sketch it now, postponing for a moment a general discussion of the phase space structure
associated to Grassmann variables. The momentum π conjugate to ψ is obtained by

π ≡ ∂L

∂ψ̇
= −iψ̄ (26)

which shows that the systems is already in a hamiltonian form, the conjugate momenta being
ψ̄ up to a factor. The classical Poisson bracket {π, ψ}

PB
= −1 can be written as {ψ, ψ̄}

PB
= −i,

and has the property of being symmetric.
Quantizing with anticommutators (fermionic system must be treated this way) one obtains

{ψ̂, ψ̂†} = ~ , {ψ̂, ψ̂} = {ψ̂†, ψ̂†} = 0 (27)

that is, the classical variables ψ and ψ̄ are promoted to linear operators ψ̂ and ψ̂† satisfying
anticommutation relations taken to be i~ times the value of the classical Poisson brackets.
Setting ~ = 1 for simplicity, one finds the fermionic creation/annihilation algebra

{ψ̂, ψ̂†} = 1 , {ψ̂, ψ̂} = {ψ̂†, ψ̂†} = 0 (28)

that can be realized in a two dimensional Hilbert space. The latter is explicitly constructed à
la Fock, considering ψ̂ as destruction operator and ψ̂† as creation operator. One starts defining
the Fock vacuum |0〉, fixed by the condition ψ̂|0〉 = 0. A second state is obtained acting with
ψ̂†

|1〉 = ψ̂†|0〉 . (29)

No other states can be obtained acting again with the creation operator ψ̂† as (ψ̂†)2 = 0.
Normalizing the Fock vacuum to unity, 〈0|0〉 = 1, with 〈0| = |0〉†, one finds that these two
states are orthonomal

〈m|n〉 = δmn m,n = 0, 1 (30)

and thus span a two-dimensional Hilbert space.
The Fock vacuum is indeed the ground state for the fermionic oscillator, whose quantum

Hamilanian Ĥ = ω(ψ̂†ψ̂− 1
2
) is obtained from the classical one by choosing a suitable ordering

of the operators upon quantization.

Hamiltonian structure and canonical quantization

Path integrals for fermions can be derived from the canonical formalism, just as in the
bosonic case. For this we need to review the hamiltonian formalism and describe the canonical
quantization of mechanical systems with Grassmann variables.

The hamiltonian formalism aims at producing the equations of motion as first order differ-
ential equations in time. For a simple bosonic model with phase space coordinates (x, p), the
phase space action is usually written in the form

S[x, p] =

∫
dt
(
pẋ−H(x, p)

)
(31)
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The first term with derivatives (the pẋ term) is called the symplectic term, and fixes the Poisson
bracket structure of phase space. Up to total derivatives it can be written in a more symmetrical
form, with the time derivatives shared equally by x and p,

S[x, p] =

∫
dt
(1

2
(pẋ− xṗ)−H(x, p)

)
=

∫
dt
(1

2
za(Ω−1)abż

b −H(z)
)

(32)

where in the last way of writing we have denoted collectively the phase space coordinates by
za = (z1, z2) = (x, p). The symplectic term contains the constant invertible matrix

(Ω−1)ab =

(
0 −1
1 0

)
(33)

with inverse

Ωab =

(
0 1
−1 0

)
. (34)

The latter is used to define the Poisson bracket between two generic phase space functions F
and G

{F,G}
PB

=
∂F

∂za
Ωab ∂G

∂zb
. (35)

In particular, one finds that the Poisson bracket of the phase space coordinates themselves is
given by

{za, zb}
PB

= Ωab . (36)

This is seen to coincide with standard definitions. The Poisson bracket satisfies the following
properties:

{F,G}
PB

= −{G,F}
PB

(antisymmetry)

{F,GH}
PB

= {F,G}
PB
H +G{F,H}

PB
(Leibniz rule) (37)

{F, {G,H}
PB
}
PB

+ {G, {H,F}
PB
}
PB

+ {H, {F,G}
PB
}
PB

= 0 (Jacobi identity) .

These properties make it consistent to adopt the canonical quantization rules of substituting
the fundamental variables za by linear operators ẑa acting on a Hilbert space of physical states,
with commutation relations fixed to be i~ times the value of the classical Poisson brackets

[ẑa, ẑb] = i~Ωab . (38)

More generally, phase space functions F (z) are elevated to operators F̂ (ẑ) (after fixing eventual
ordering ambiguities) with commutation relations of the form

[F̂ (ẑ), Ĝ(ẑ)] = i~{F,G}
PB

+ higher order terms in ~ . (39)

These prescriptions are consistent as both sides satisfy the same algebraic properties, as listed
in (37) for the Poisson brackets.

This set up can be extended to models with Grassmann variables. One must essentially take
care of signs arising from the anticommuting sector. Let us show how this is done. We denote
collectively the phase space coordinates by ZA = (xi, pi, θ

α), with (xi, pi) the usual Grassmann
even phase space variables and θα the Grassmann odd variables. We consider a phase space
action of the form

S[ZA] =

∫
dt

(
1

2
ZA(Ω−1)ABŻ

B −H(Z)

)
(40)
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where the symplectic term depends on a constant invertible matrix (Ω−1)AB with inverse ΩAB.
Again this term must be written splitting the time derivatives democratically between all
variables, as in (32). The symplectic term and the hamiltonian are taken to be Grassmann
even (i.e. commuting objects). Then, it is seen that ΩAB is antisymmetric in the sector related
to the bosonic coordinates, and symmetric in the sector belonging to the Grassmann variables
(other off-diagonal entries vanish). It is used to define the Poisson bracket by

{F,G}
PB

=
∂
R
F

∂ZA
ΩAB ∂LG

∂ZB
(41)

where both right and left derivatives are used. In particular one finds

{ZA, ZB}
PB

= ΩAB . (42)

Phase space functions can be restricted to have a definite Grassmann parity. Given any
such function F , we denote its Grassmann parity by (−1)εF , where εF = 0 if F is Grassmann
even (bosonic function) and εF = 1 if F is Grassmann odd (fermionic function). Then, one
finds a graded generalization of the properties in eq. (37), namely

{F,G}
PB

= (−1)εF εG+1{G,F}
PB

{F,GH}
PB

= {F,G}
PB
H + (−1)εF εGG{F,H}

PB
(43)

{F, {G,H}
PB
}
PB

+ (−1)εF (εG+εH){G, {H,F}
PB
}
PB

+ (−1)εH(εF+εG){H, {F,G}
PB
}
PB

= 0 .

The equations of motion are first order in time. They can be derived minimizing the action
and can be expressed in term of the Poisson brackets

ŻA = ΩAB ∂LH

∂ZB
→ ŻA = {ZA, H}

PB
. (44)

Thus one find the standard form of the Hamilton’s equation of motion.
The properties of the Poisson brackets make it consistent to adopt the canonical quanti-

zation rules, that consist in promoting the phase space coordinates ZA to operators ẐA with
commutation/anticommutation relation fixed by their classical Poisson brackets

[ẐA, ẐB} = i~{ZA, ZB}
PB

= i~ΩAB (45)

where we have employed the compact notation

[· , ·} =

{
{· , ·} anticommutator if both variables are fermionic

[· , ·] commutator otherwise
(46)

often called “graded commutator”. Indeed, the graded commutator satisfies identities similar
to those for the Poisson brackets reported in (43), and this makes it consistent to adopt the
above quantization rules.

The previous quick exposition becomes clearer by working through some simple examples.

Examples

(i) Single real Grassmann variable ψ (“single Majorana fermion in one dimension”).
Taking as phase space lagrangian

L =
i

2
ψψ̇ −H(ψ) (47)
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one finds Ω−1 = i, Ω = −i, and Poisson bracket at equal times {ψ, ψ}
PB

= −i. The dynamical
variable ψ(t) is often called a Majorana fermion in one dimension, as it satisfies the Dirac
equation in one dimension plus a reality condition (akin to the Majorana condition used in
four dimensions). One may notice that the only possible Grassmann even hamiltonian is a
constant, so that this model is rather trivial. One checks in this example that a phase space
can be odd dimensional if Grassmann variables are present. The model is formally quantized
by introducing the hermitian operator ψ̂ with anticommutator

{ψ̂, ψ̂} = ~ . (48)

The quantum theory is also trivial, as one realizes this algebra in a one dimensional Hilbert
space, with the operator ψ̂ acting as multiplication by the constant

√
~/2. This Hilbert space

has no room for any nontrivial dynamics.
(ii) Several real Grassmann variables ψi (“Majorana fermions in one dimension”).

For the case of several real Grassmann variables one may take as phase space lagrangian

L =
i

2
ψiψ̇i −H(ψi) i = 1, ..., n (49)

and one finds (Ω−1)ij = iδij, Ωij = −iδij. The Poisson brackets at equal times read as
{ψi, ψj}

PB
= −iδij. Quantization is obtained by considering the anticommutation relations

{ψ̂i, ψ̂j} = ~δij (50)

which is recognized to be proportional to the Clifford algebra of the gamma matrices, appearing
in the Dirac equation in n euclidean dimensions. Indeed setting ψ̂i =

√
~/2 γi turns the above

anticommutation relations into the Clifford algebra

{γi, γj} = 2δij (51)

which is the defining properties of the gamma matrices of the Dirac equation

(γi∂i +m)Ψ(x) = 0 . (52)

It is known that the algebra (51) is realized in a complex vector space of dimension 2[n
2

], where
[n

2
] indicates the integer part of n

2
. One concludes that the operators ψ̂i are realised as hermitian

operators in a Hilbert space of dimensions 2[n
2

].
(iii) Complex Grassmann variables ψ and ψ̄ (“single Dirac fermion in one dimension”).

Taking as phase space lagrangian

L = iψ̄ψ̇ −H(ψ, ψ̄) (53)

one finds {ψ, ψ̄}
PB

= −i as the only nontrivial Poisson bracket between the phase space co-

ordinates (ψ, ψ̄). It is quantized by the anticommutator {ψ̂, ψ̂†} = ~, producing a fermionic
annihilation/creation algebra. It is realized in a two dimensional Fock space, as anticipated
earlier while discussing the fermionic harmonic oscillator.

These basic examples can be used to find a representation of the gamma matrices in arbitrary
dimensions, and check their dimensionality. One proceeds as follows. In even dimensions
n = 2m one combines the 2m Majorana worldline fermions, corresponding to the gamma
matrices, in m pairs of worldline Dirac fermions, that generate a set of m copies of independent,
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anticommuting creation/annihilation operators. The latter act on the tensor products of m
two-dimensional fermionic Fock spaces, each one realizing an independent set of fermionic
annihilation/creation operators. This gives a total Hilbert space of 2m dimensions, in accord
with the assertion given above. Adding an extra Majorana fermion corresponds to a Clifford
algebra in odd dimensions (i.e. 2m+ 1 dimensions): the related dimension of the Hilbert space
does not change and the last Majorana fermion can be realized as proportional to the chirality
matrix of the 2m dimensional case.

2.1 Coherent states

It is useful to introduce coherent states, an overcomplete basis of vectors of the fermionic Fock
space described previously, for deriving a path integral for fermionic systems. They provide ket
eigenstates of the fermionic operator ψ̂ with Grassmann valued eigenvalues. Together with a
suitable resolution of the identity, they allow to convert the matrix elements of the quantum
evolution operator (transition amplitudes) into a path integral where one sums over Grassmann
valued functions. We first review the construction of bosonic coherent states, used in the theory
of the harmonic oscillator, to have a guide on the construction for the fermionic case.

In the theory of the harmonic oscillator one introduces coherent states defined as eigenstates
of the annihilation operator â. Let us recall the algebra of the creation and annihilation
operators â† and â

[â, â†] = 1 , [â, â] = 0 , [â†, â†] = 0 . (54)

It is realized in an infinite dimensional Hilbert space, identified with a Fock space constructed
as follows. A complete orthonormal basis is obtained by starting from the Fock vacuum |0〉,
defined by the condition â|0〉 = 0. The other states of the basis are obtained by acting with â†

an arbitrary number of times on the Fock vacuum |0〉

|0〉 such that â|0〉 = 0

|1〉 = â†|0〉

|2〉 =
â†√

2
|1〉 =

(â†)2

√
2!
|0〉

|3〉 =
â†√

3
|2〉 =

(â†)3

√
3!
|0〉

...

|n〉 =
â†√
n
|n− 1〉 =

(â†)n√
n!
|0〉

... (55)

Normalizing the Fock vacuum to unit norm, 〈0|0〉 = 1, where 〈0| = |0〉†, one finds that these
states are orthonomal

〈m|n〉 = δmn m,n = 0, 1, 2, ... . (56)

Now, choosing a complex number a, one builds the coherent states |a〉 defined as

|a〉 = eaâ
†|0〉 . (57)

They are eigenstates of the annihilation operator â

â|a〉 = a|a〉 . (58)
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A way of proving this is by expanding the exponential and viewing |a〉 as an infinite sum with
suitable coefficients of the basis vectors of the Fock space

|a〉 = eaâ
†|0〉

=
(

1 + aâ† +
1

2!
(aâ†)2 +

1

3!
(aâ†)3 + · · ·+ 1

n!
(aâ†)n + · · ·

)
|0〉

= |0〉+ a|1〉+
a2

√
2!
|2〉+

a3

√
3!
|3〉+ · · ·+ an√

n!
|n〉+ · · · . (59)

In this form it is easy to calculate (using â|n〉 =
√
n|n− 1〉)

â|a〉 = â
(
|0〉+ a|1〉+

a2

√
2!
|2〉+

a3

√
3!
|3〉+ · · ·+ an√

n!
|n〉+ · · ·

)
= 0 + a|0〉+ a2|1〉+

a3

√
2!
|2〉+ · · ·+ an√

(n− 1)!
|n− 1〉+ · · ·

= a
(
|0〉+ a|1〉+

a2

√
2!
|2〉+ · · ·+ an−1√

(n− 1)!
|n− 1〉+ · · ·

)
= a|a〉 . (60)

A faster way of proving the same result is to recognize that the algebra (54) can be realized by

â† → ā , â → ∂

∂ā
(61)

acting on functions of ā ∈ C, and the result follows straighfowardly (one can write |a〉 = eaā

and computes â|a〉 = ∂
∂ā
eaā = aeaā = a|a〉).

A list of properties that can be proven with similar calculations are

(i) 〈ā| = |a〉† = 〈0|eāâ =⇒ 〈ā|â† = 〈ā|ā
(ii) 〈ā|a〉 = eāa (scalar product)

(iii) 1 =

∫
dadā

2πi
e−āa |a〉〈ā| (resolution of the identity)

(iv) Tr Â =

∫
dadā

2πi
e−āa 〈ā|Â|a〉 (trace of the operator Â) . (62)

One should note that the set of coherent states form an over-complete basis, in particular they
are not orthonormal, as 〈b̄|a〉 = eb̄a 6= 0. However, it is useful to keep this redundancy.

A similar construction can be introduced for fermionic systems. As we have seen the algebra
of the anticommutators of the fermionic creation/annihilation operators ψ̂† and ψ̂

{ψ̂, ψ̂†} = 1 , {ψ̂, ψ̂} = 0 , {ψ̂†, ψ̂†} = 0 (63)

can be realized by 2× 2 matrices acting in the two-dimensional fermionic Fock space generated
by the vectors |0〉 and |1〉, defined by

ψ̂|0〉 = 0 , |1〉 = ψ̂†|0〉 . (64)

One defines fermionic coherent states as eigenstates |ψ〉 of the annihilation operator ψ̂,
having the complex Grassmann number ψ as eigenvalue

ψ̂|ψ〉 = ψ|ψ〉 . (65)
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The Grassmann numbers, such as ψ and its complex conjugate ψ̄, anticommute between them-
selves, and we define them to anticommute also with the fermionic operators ψ̂† and ψ̂. No
confusion should arise between the operators ψ̂ and ψ̂† that have a hat, and the complex
Grassmann variables ψ and ψ̄, eigenvalues of the eigenstates |ψ〉 and 〈ψ̄| respectively, that
carry no hat (similarly, in the previous chapter, we indicated position operator, eigenstates and
eigenvalues so that x̂|x〉 = x|x〉).

One can prove the following statements

(i) |ψ〉 = eψ̂
†ψ|0〉

(ii) 〈ψ̄| = 〈0|eψ̄ψ̂ =⇒ 〈ψ̄|ψ̂† = 〈ψ̄|ψ̄

(iii) 〈ψ̄|ψ〉 = eψ̄ψ

(iv) 1 =

∫
dψ̄dψ e−ψ̄ψ |ψ〉〈ψ̄|

(v) Tr Â =

∫
dψ̄dψ e−ψ̄ψ 〈−ψ̄|Â|ψ〉

(vi) Str Â ≡ Tr[(−1)F̂ Â] =

∫
dψ̄dψ e−ψ̄ψ 〈ψ̄|Â|ψ〉 (66)

where Â is an arbitrary bosonic operator.
The proofs can be obtained by explicit calculation. Let us proceed systematically.
(i) One expands the exponential and write the coherent state as

|ψ〉 = eψ̂
†ψ|0〉

= (1 + ψ̂†ψ)|0〉 = |0〉 − ψψ̂†|0〉
= |0〉 − ψ|1〉 (67)

and computes

ψ̂|ψ〉 = ψ̂eψ̂
†ψ|0〉

= ψ̂
(
|0〉 − ψ|1〉

)
= −ψ̂ψ|1〉 = ψψ̂|1〉 = ψ|0〉 = ψ

(
|0〉 − ψ|1〉

)
= ψ|ψ〉 (68)

which proves that |ψ〉 is a coherent state. Note that terms proportional to ψ2 can be inserted
or eliminated at wish, as they vanish due to Grassmann property ψ2 = 0.

(ii) “Bra” coherent state. To prove this relation for a bra coherent state it is sufficient
to take the hermitian conjugate of the ket coherent state |ψ〉. One must remember that the
definition of hermitian conjugate reduces to complex conjugation for Grassmann variables and
reverses the positions of both variables and operators. For example

(ψ̂†ψ)† = ψ̄ψ̂ . (69)

(iii) Scalar product. A direct computation (recalling that ψ2 = 0, ψ̄2 = 0 and ψψ̄ = −ψ̄ψ)
gives

〈ψ̄|ψ〉 =
(
〈0| − 〈1|ψ̄

)(
|0〉 − ψ|1〉

)
= 〈0|0〉+ ψ̄ψ〈1|1〉 = 1 + ψ̄ψ

= eψ̄ψ . (70)
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(iv) Resolution of the identity. First of all one must recall that the definition of integration
over Grassmann variables makes it identical with differentiation. In particular we use left
differentiation, that removes the variable from the left (one must pay attention to signs arising
from this operation) ∫

dψ ≡ ∂
L

∂ψ
,

∫
dψ̄ ≡ ∂

L

∂ψ̄
. (71)

Now a direct calculation shows that∫
dψ̄dψ e−ψ̄ψ |ψ〉〈ψ̄| =

∫
dψ̄dψ (1− ψ̄ψ)

(
|0〉 − ψ|1〉

)(
〈0| − 〈1|ψ̄

)
= |0〉〈0|+ |1〉〈1| . (72)

We point out that the Grassmann variables are here defined to commute with the Fock vacuum
|0〉, so that they commute with the coherent states, but anticommute with |1〉 = ψ̂†|0〉 (as they
anticommute with ψ̂†).

(v) Trace. Given a bosonic operator Â, that commutes with ψ and ψ̄, one can verify that∫
dψ̄dψ e−ψ̄ψ 〈−ψ̄|Â|ψ〉 =

∫
dψ̄dψ (1− ψ̄ψ)

(
〈0|+ 〈1|ψ̄

)
Â
(
|0〉 − ψ|1〉

)
=

∫
dψ̄dψ (1− ψ̄ψ)

(
〈0|Â|0〉 − ψ̄ψ〈1|Â|1〉+ · · ·

)
= 〈0|Â|0〉+ 〈1|Â|1〉
= Tr Â . (73)

(vi) Supertrace. An analogous calculation gives∫
dψ̄dψ e−ψ̄ψ 〈ψ̄|Â|ψ〉 =

∫
dψ̄dψ (1− ψ̄ψ)

(
〈0| − 〈1|ψ̄

)
Â
(
|0〉 − ψ|1〉

)
=

∫
dψ̄dψ (1− ψ̄ψ)

(
〈0|Â|0〉+ ψ̄ψ〈1|Â|1〉+ · · ·

)
= 〈0|Â|0〉 − 〈1|Â|1〉 = Tr[(−1)F̂ Â]

= Str Â . (74)

Here F̂ is the fermion number operator (or occupation number, with egenvalues F = 0 for |0〉
and F = 1 for |1〉). The last line gives the definition of the supertrace.

3 Fermionic path integrals

We now have all the tools to find a path integral representation of the transition amplitude
between coherent states 〈ψ̄f |e−iĤT |ψi〉, where we have set ~ = 1 for notational simplicity. We

consider an hamiltonian Ĥ = Ĥ(ψ̂†, ψ̂) written in such a way that all creation operators are on
the left of the annihilation operators, something that is always possible to achieve using the fun-
damental anticommutation relations in (63). For a single pair of fermionic creation/annihilation
operators the most general (bosonic) hamiltonian takes the form Ĥ = ωψ̂†ψ̂ + h0.

To turn the transition amplitude into a path integral, one divides the total propagation
time T into N steps of duration ε = T

N
, so that T = Nε. Using N − 1 times the decomposition
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of the identity in terms of coherent states, one gets the following equalites

〈ψ̄f |e−iĤT |ψi〉 = 〈ψ̄f | e−iĤεe−iĤε · · · e−iĤε︸ ︷︷ ︸
N times

|ψi〉

= 〈ψ̄f |e−iĤε 1 e−iĤε 1 · · · 1 e−iĤε|ψi〉

=

∫ (N−1∏
k=1

dψ̄kdψk e
−ψ̄kψk

) N∏
k=1

〈ψ̄k|e−iĤε|ψk−1〉 (75)

where we have defined ψ0 ≡ ψi and ψ̄N ≡ ψ̄f . For ε→ 0 one can approximate the elementary
transition amplitudes as follows

〈ψ̄k|e−iĤ(ψ̂†,ψ̂)ε|ψk−1〉 = 〈ψ̄k|
(

1− iĤ(ψ̂†, ψ̂)ε+ · · ·
)
|ψk−1〉

= 〈ψ̄k|ψk−1〉 − iε〈ψ̄k|Ĥ(ψ̂†, ψ̂)|ψk−1〉+ · · ·

=
(

1− iεH(ψ̄k, ψk−1) + · · ·
)
〈ψ̄k|ψk−1〉

= e−iεH(ψ̄k,ψk−1)eψ̄kψk−1 . (76)

The substitution Ĥ(ψ̂†, ψ̂)→ H(ψ̄k, ψk−1) follows from the ordering of the hamiltonian specified
previously (ψ̂† on the left and ψ̂ on the right). This allows one to act with the creation operator
on a bra eigenstate, and with the annihilation operator on a ket eigenstate, so that all operators
in the hamitonian gets substituted by the respective eigenvalues, producing a function of these
Grassmann numbers. This way the hamiltonian operator Ĥ(ψ̂†, ψ̂) gets substituted by the
hamiltonian function H(ψ̄k, ψk−1). These approximations are valid for N → ∞, i.e. ε → 0.
Substituting (76) in (75) one finds

〈ψ̄f |e−iĤT |ψi〉 = lim
N→∞

∫ (N−1∏
k=1

dψ̄kdψk e
−ψ̄kψk

)
ei

∑N
k=1[−iψ̄kψk−1−H(ψ̄k,ψk−1)ε]

= lim
N→∞

∫ (N−1∏
k=1

dψ̄kdψk

)
ei

∑N
k=1[iψ̄k(ψk−ψk−1)−H(ψ̄k,ψk−1)ε] eψ̄NψN

= lim
N→∞

∫ (N−1∏
k=1

dψ̄kdψk

)
ei

∑N
k=1[iψ̄k

(ψk−ψk−1)

ε
−H(ψ̄k,ψk−1)]ε+ψ̄NψN

=

∫
Dψ̄Dψ ei

∫ T
0 dt[iψ̄ψ̇−H(ψ̄,ψ)]+ψ̄(T )ψ(T ) =

∫
Dψ̄Dψ eiS[ψ̄,ψ] . (77)

This is the path integral for one complex fermionic degree of freedom. We recognize in the
exponent a discretization of the classical action

S[ψ̄, ψ] =

∫ T

0

dt [iψ̄ψ̇ −H(ψ̄, ψ)]− iψ̄(T )ψ(T )

→
N∑
k=1

ε [iψ̄k
(ψk − ψk−1)

ε
−H(ψ̄k, ψk−1)]− iψ̄NψN (78)

where T = Nε is the total propagation time. The last way of writing the amplitude in (77) is
symbolic and indicates the formal sum over all paths ψ̄(t), ψ(t) such that ψ(0) = ψ0 ≡ ψi and
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ψ̄(T ) = ψ̄N ≡ ψ̄f , weighed by the exponential of i times the classical action S[ψ̄, ψ]. The action
contains also the boundary term −iψ̄(T )ψ(T ). The latter is essential to be able to formulate
a variational principle specifying as boundary data the initial value for the function ψ(t) and
the final value for the function ψ̄(t) (i.e. ψ(0) = ψi and ψ̄(T ) = ψ̄f ).

Trace

One can now produce a path integral expression for the trace of the transition amplitude
e−iĤT . Using the expression of the trace in the coherent state basis, and the path integral
representation of the transition amplitude found previously, one finds

Tr[e−iĤT ] =

∫
dψ̄0dψ0 e

−ψ̄0ψ0 〈−ψ̄0|e−iĤT |ψ0〉

= lim
N→∞

∫ (N−1∏
k=0

dψ̄kdψk

)
ei

∑N
k=1[iψ̄k

(ψk−ψk−1)

ε
−H(ψ̄k,ψk−1)]ε

=

∫
A

Dψ̄Dψ eiS[ψ̄,ψ] (79)

where we have identified ψ̄N = −ψ̄0 and ψN = −ψ0, and used that the exponential e−ψ̄0ψ0 due
to the trace cancels the boundary term eψ̄NψN . In the continuum limit one finds a sum on all
antiperiodic paths i.e. such that ψ(T ) = −ψ(0) and ψ̄(T ) = −ψ̄(0) (A stands for antiperiodic
boundary conditions).

Supertrace

Similarly, the supertrace is calculated by

Str[e−iĤT ] =

∫
dψ̄0dψ0 e

−ψ̄0ψ0 〈ψ̄0|e−iĤT |ψ0〉

= lim
N→∞

∫ (N−1∏
k=0

dψ̄kdψk

)
ei

∑N
k=1[iψ̄k

(ψk−ψk−1)

ε
−H(ψ̄k,ψk−1)]ε

=

∫
P

Dψ̄Dψ eiS[ψ̄,ψ] (80)

where we have now identified ψ̄N = ψ̄0 and ψN = ψ0. Again the term e−ψ̄0ψ0 due to the
supertrace cancels the boundary term eψ̄NψN . In the continuum limit the sum is over all
periodic trajectories defined by the boundary conditions ψ(T ) = ψ(0) and ψ̄(T ) = ψ̄(0) (P
stands for periodic boundary conditions).

We have derived the path integral for fermionic systems from the operatorial formulation
using a time slicing of the total propagation time. This produces a discretization of the classical
action and defines concretely the meaning of the path integral once written in the continuum
notation. It corresponds to the time slicing regularization of the path integral. We have dis-
cussed just a simple model with one complex degree of freedom, ψ(t) and its complex conjugate
ψ̄(t), that may be called a Dirac fermion in one dimension. The extension to several complex
degrees of freedom is immediate.

A subtle situation arises if one imposes a reality condition on the fermionic variable ψ(t).
In a sense this is the minimal possible model for fermions. Since ψ̄(t) = ψ(t), one may call it
a Majorana fermion in one dimension, because of similar definitions for fermionic fields in four
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dimensions. Its action takes the form

S[ψ] =

∫
dt
i

2
ψψ̇ . (81)

It is formally real and non vanishing because of the Grassmann character of the variable, but
there exists no nontrivial even term that can be written down for an hamiltonian. As already
mentioned, canonical quantization gives rise to the anticommutation relation

{ψ̂, ψ̂} = 1 (82)

which may be realized as multiplication by a number, ψ̂ = 1√
2
, acting on a one dimensional

Hlibert space. There is no room for any dynamics and the model is empty.
For a number n > 1 of Majorana fermions ψi, i = 1, ..., n, one can write down an action

containing a nontrivial hamiltonian

S[ψi] =

∫
dt

(
i

2
ψiψ̇i −H(ψi)

)
. (83)

Its canonical quantization gives rise to the algebra

{ψ̂i, ψ̂j} = δij . (84)

For an even number of Majorana fermions, say n = 2m, one can realize it by pairing together the
Majorana fermions to obtain m complex Dirac fermions, rewrite the anticommutator algebra
in the new basis, and obtain a set of independent fermionic creation/annihilation operators
acting on a fermionic Fock space. Then one may proceed in constructing the path integral.
This procedure is sometimes called “fermion halving”, as one halves the number of fermions at
the price of making them complex. However, this procedure may hide symmetries manifest in
the Majorana basis.

To avoid this last problem, one may instead add a second set of (free) Majorana fermions
χi to be able to make n complex combinations Ψi = 1√

2
(ψi + iχi), and with these Dirac

fermions proceed again as before in the construction of the path integral. The fermions χi

are just free spectators, and the hamiltonian does not contain them. In this case one must
be careful to correct appropriately the overall normalization of the path integral, especially
when computing traces, as the physical Hilbert space of the ψi has dimension 2

n
2 , which differs

from the dimensions of the full unphysical Hilbert space of the Ψi that is 2n. In this sense
this procedure is sometimes called “fermion doubling”, as the number of Majorana fermions is
doubled.

Finally, if the number of Majorana fermions is odd, say n = 2m+ 1, one can treat the first
2m fermions in either one of the two ways, but for the last one one must necessarily use the
fermion doubling procedure. An important application of Majorana fermions is in worldline
descriptions of spin 1/2 particles in spacetimes of dimensions D > 1, and in particular in D = 4.

To summarize, we have discussed the path integral quantization of fermionic theories with
one-dimensional Majorana fermions ψi

S[ψ] =

∫
dt

(
i

2
ψiψ̇i −H(ψi)

)
→

∫
Dψ eiS[ψ] (85)

and one-dimensional Dirac fermions ψi, ψ̄i

S[ψ, ψ̄] =

∫
dt
(
iψ̄iψ̇

i −H(ψi, ψ̄i)
)
→

∫
Dψ̄Dψ eiS[ψ,ψ̄] (86)

15



whose path integrals are concretely made sense of by using the time slicing discretization. Other
regularizations may also be developed and will be discussed later on.

Finally, one can perform a Wick rotation to an euclidean time τ by t → −iτ , and derive
euclidean path integrals of the form∫

Dψ e−SE [ψ] and

∫
Dψ̄Dψ e−SE [ψ,ψ̄] (87)

where now

SE[ψ] =

∫
dt

(
1

2
ψiψ̇i +H(ψi)

)
and SE[ψ, ψ̄] =

∫
dt
(
ψ̄iψ̇

i +H(ψi, ψ̄i)
)
. (88)

In this form they will be used in subsequent parts of the book.

3.1 Correlation functions

Correlation functions are defined as normalized averages of the dynamical variables. Again,
one may introduce a generating functional by adding sources to the path integral. Using an
hypercondensed notation, and denoting all fermionic functions by ψi and corresponding sources
by ηi (taking values in a Grassmann algebra), one may write down the generating functional
of correlation functions

Z[η] =

∫
Dψ eiS[ψ]+iηiψ

i

. (89)

As an example, the two point function is given by

〈ψiψj〉 =

∫
Dψ ψiψj eiS[ψ]∫
Dψ eiS[ψ]

=
1

Z[0]

(1

i

)2 δ2Z[η]

δηiδηj

∣∣∣∣
η=0

. (90)

In a free theory, identified by a quadratic action of the form S[ψ] = −1
2
ψiKijψ

j with Kij

an antisymmetric matrix, one may formally compute the path integral with sources by gaus-
sian integration (after completing squares and making use of the transitional invariance of the
measure), thus obtaining an answer of the form

Z[η] = det
1
2 (Kij) e

− i
2
ηiG

ijηj (91)

where Gij is the inverse of Kij, also an antisymmetric matrix. One finds

〈ψiψj〉 = −iGij (92)

where Gij is interpreted as a Green function in quantum mechanical applications. To check the
overall normalization one must be careful with signs arising from the anticommuting character
of the Grassmann variables and from the antisymmetric properties of Kij and Gij.

Similar formulae may be written down for complex fermions (though they are contained in
the above formula as well) and in the euclidean time obtained after a Wick rotation. Eventually
one must take into account the chosen boundary conditions on the path integral and use the
corresponding Green functions. The whole set of generating functions described already for the
bosonic case may be introduced here as well. We leave their derivation as an exercize for the
reader.
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4 Supersymmetric quantum mechanics

Very special quantum mechanical models containing bosons and fermions may exhibit the
property of supersymmetry, a particular symmetry that finds various applications in theoretical
physics. In quantum field theories supersymmetry relates particles with integer spins (bosons)
to particles with half-integer spins (fermions). It is employed to find extensions of the standard
model of elementary particles that softens hierarchical problems related to the mass of the Higgs
boson. More generally, it helps improving the ultraviolet behavior of quantum field theories
and gravitational theories (supergravities). It is also a fundamental ingredient of string theory.

At the quantum mechanical level, supersymmetry appears in worldline models for particles
with spin. In addition, it finds beautiful applications in mathematical physics, as for example
in producing a simple and elegant proof of index theorems, that relate topological properties
of differential manifolds to local properties.

In the following section we present a class of quantum mechanical models, including the
supersymmetric harmonic oscillator, that exemplifies various aspects of supersymmetry in the
simple context of quantum mechanics. We identify its classical action and use it to exem-
plify the calculation of a topological invariant associated to families of theories, the so-called
Witten index, in term of path integrals. A cautionary note: once should observe that in the
first quantized description of particles two spaces are present: (i) the worldline, that may be
considered as a 0+1 dimensional space-time, and (ii) the target 3+1 dimensional space-time
on which the particle propagates and which is the embedding space of the worldline. One may
have supersymmetries on both spaces: (i) Supersymmetry on the worldline, which is the case
we are going to analyze, useful for describing spinning particles. The states called bosonic and
fermionic are not related to the spin of the particle in target space (which is fixed). (ii) Super-
symmetry in target space, in which case the model (called superparticle) describes a multiplet
of particles containing bosons and fermions in equal numbers, where the bosons are particle
with integer spin and fermions particles with half integers spin, with the spin as seen in target
space. Superparticles are not discussed in this book.

N=2 supersymmetric model

We introduce here a supersymmetric model for the motion of a non-relativistic particle of
unit mass on a line. The particle is described by hermitian bosonic operators, the position x̂
and the momentum p̂, satisfying the usual commutation relation

[x̂, p̂] = i (93)

augmented by fermionic annhilation/creation operators ψ and ψ† that satisfy anticommutation
relations

{ψ, ψ†} = 1 (94)

(other independent graded commutators vanish).
The dynamics is specified by an hamiltonian that depends on a function W (x), called

prepotential, through its first and second derivatives W ′(x) and W ′′(x)

Ĥ =
1

2
p̂2 +

1

2

(
W ′(x̂)

)2

+
1

2
W ′′(x̂)(ψ̂†ψ̂ − ψ̂ψ̂†) . (95)
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In addition the model has conserved charges

Q̂ = (p̂+ iW ′(x̂))ψ̂

Q̂† = (p̂− iW ′(x̂))ψ̂†

F̂ = ψ̂†ψ̂ (96)

that indeed commute with the hamiltonian, as may be verified by an explicit calculation

[Q̂, Ĥ] = [Q̂†, Ĥ] = [F̂ , Ĥ] = 0 . (97)

The charges Q̂ and Q̂† are the supercharges that generate supersymmetry transformations.
They are fermionic operators. There are two of them, Q̂ and Q̂†, or equivalently the real and
the imaginary part of Q̂. This means that there are two supersymmetries, thus the name N = 2
supersymmetry. The hamiltonian may look complicated, but in supersymmetric models it is
related to the anticommutator of the supercharges, which are more basic objects. In the present
case one has

{Q̂, Q̂†} = 2Ĥ , {Q̂, Q̂} = {Q̂†, Q̂†} = 0 , [H,Q] = 0 . (98)

These relations contain the hallmark of supersymmetry: the hamiltonian, which is the generator
of time translations, is related to the anticommutator of the supersymmetry charges, i.e. a time
translation is obtained by the composition of two supersymmetry transformations.

In the present case there is also a conserved fermion number operator F̂ , that is seen to
satisfy

[Q̂, F̂ ] = Q̂ , [Q̂†, F̂ ] = −Q̂† . (99)

To summarize, the N = 2 supersymmetric model is characterized by a N = 2 supersym-
metry algebra, a superalgebra with bosonic (Ĥ, F̂ ) and fermionic (Q̂, Q̂†) charges with the
following non vanishing independent graded commutation relations

{Q̂, Q̂†} = 2Ĥ , [Q̂, F̂ ] = Q̂ , [Q̂†, F̂ ] = −Q̂† . (100)

The operators of the model are realized explicitly in a Hilbert spaces constructed as follows.
The operators x̂ and p̂ are realized in the usual way on the Hilbert space of square integrable
functions by multiplication x̂→ x and differentiation p̂→ −i ∂

∂x
. As for the fermionic operators

ψ̂† e ψ̂, their algebra identifies them as fermionic creation/annihilation operators realized on a
two dimensional Fock space with basis |0〉 and |1〉, defined by

ψ̂|0〉 = 0, 〈0|0〉 = 1 (Fock vacuum)

|1〉 = ψ̂†|0〉 (state with one fermionic exitation). (101)

We recall that one cannot add additional excitations, as the creation operator satisfies {ψ†, ψ†} =
0, so that |2〉 = ψ̂†|1〉 = (ψ̂†)2|0〉 = 0. Thus, one has a Pauli exclusion principle for the states
created by the fermionic operators.

The full Hilbert space is the direct product of the two spaces described above, so that one
may realize the states by a wave function with two components

Ψ(x) =

(
ϕ1(x)
ϕ2(x)

)
(102)
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on which the basic operators act as follows

x̂ −→ x

p̂ −→ −i ∂
∂x

ψ̂ −→
(

0 1
0 0

)
ψ̂† −→

(
0 0
1 0

)
. (103)

As a consequence, one finds the following explicit realization of the conserved charges of the
model

Q̂ =

(
0 −i∂x + iW ′(x)
0 0

)
Q̂† =

(
0 0

−i∂x − iW ′(x) 0

)
Ĥ =

(
H− 0
0 H+

)
=

(
−1

2
∂2
x + 1

2
(W ′(x))2 − 1

2
W ′′(x) 0

0 −1
2
∂2
x + 1

2
(W ′(x))2 + 1

2
W ′′(x)

)
F̂ =

(
0 0
0 1

)
(104)

The hamiltonian is diagonal in the Fock space basis and contains the two hamiltonians H∓
with potentials V∓ = 1

2
(W ′(x))2 ∓ 1

2
W ′′(x) . We assume them to have a suitable asymptotic

behavior that confines the particle, so that the resulting energy eigenstates are bound and have
normalized wave functions.

Having defined F̂ as the fermion number, we see that the states of the form

Ψb(x) =

(
ϕ1(x)

0

)
are bosonic as they have fermion number F = 0, while states of the form

Ψf (x) =

(
0

ϕ2(x)

)
are fermionic as they have fermion number F = 1. These are consistent worldline assignments
of the adjectives bosonic and fermionic. Note that there is no concept of rotations (and thus
of spin) on the worldline viewed as a 0+1 dimensional spacetime: the 0-dimensional space is
just a point. From the target space perspective there is no supersymmetry: the model can be
interpreted as describing a particle that moves on a line and may have two possible polarizations
of its intrinsic spin.

The Schrödinger equation takes the standard form

i
∂

∂t
Ψ = ĤΨ (105)

and in the following we analyze some properties of the energy eigenstates that follows from
suspersymmetry.
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General properties of supersymmetry

Let us discuss general properties of supersymmetry that follows form its algebraic structure.
We assume that the supersymmetric model has an hamiltonian Ĥ, one hermitian supersymme-
try charge Q̂, and the parity operator (−1)F̂ satisfying the following algebra

{Q̂, Q̂} = 2Ĥ, {(−1)F̂ , Q̂} = 0, [(−1)F̂ , Ĥ] = 0 . (106)

This algebra is general enough to derive properties of many supersymmetric systems.
In the previous case we have presented quantum mechanical theories with an hamiltonian

Ĥ, two supersymmetry charges Q̂ and Q̂†, and the fermion number operator F̂ . One may
equivalently use the two hermitian supersymmetry charges Q̂1 and Q̂2, where Q = 1√

2
(Q̂1+iQ̂2),

and we satisy the above requirements by using either one of its hermitian charges, say Q1. Also,
one may exponentiate the fermion number operator to obtain the unitary operator eiαF̂ that
perform phase rotations. For α = π one has the parity operator (−1)F̂ needed to meet the

above requirements. In the representation used in eq. (103) it reads as (−1)F̂ =
(

1 0
0 −1

)
.

We also assume a discrete energy spectrum to guarantee that the energy eigenstes are
normalizable, and of course the existence of an Hilbert space H with a positive definite inner
product. One can then prove the following properties:

Property 1: The hamiltonian Ĥ is positive definite.

That means that for any vector |Ψ〉 of the Hilbert space H

〈Ψ|Ĥ|Ψ〉 ≥ 0 . (107)

In fact, using Ĥ = 1
2
{Q̂, Q̂} = Q̂2 with a hermitian Q one calculates

〈Ψ|Ĥ|Ψ〉 = 〈Ψ|Q̂Q̂|Ψ〉 = ||Q̂|Ψ〉|2 ≥ 0 (108)

as the norm of the state Q̂|Ψ〉 is positive definite on the Hilbert space. In particular one deduces
that any energy eigenstate with energy E must have E ≥ 0.

Proprerty 2: Any state |Ψ0〉 with E = 0 is necessarily a ground state and supersymmetric.

Indeed, from the previous calculation one finds that the value E = 0 is the lowest energy
admissible, so that if a state with such an energy exists, it must be a ground state. In addition,
from 〈Ψ0|Ĥ|Ψ0〉 = 0, and using eq. (108), one finds that

Q̂|Ψ0〉 = 0 (109)

as the Hilbert space has a positive definite norm, and the only zero norm state is the null vector.
Thus |Ψ0〉 is a supersymmetric state, a state invariant under supersymmetry transformations
generated by Q̂.

Property 3: Energy levels with E 6= 0 are degenerate.

This is proved by showing that for any “bosonic” state ((−1)F = 1) with E 6= 0 there must
exists a “fermionic” state ((−1)F = −1) with the same energy, and viceversa. Let us consider
a bosonic state |b〉 (assumed to be normalizable) with energy E 6= 0

Ĥ|b〉 = E|b〉 , E 6= 0 , 〈b|b〉 = ||b〉|2 = 1

(−1)F̂ |b〉 = |b〉 . (110)
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Then one can construct
|f ′〉 = Q̂|b〉 (111)

and show that this is an energy eigenstate of opposite fermionic number

Ĥ|f ′〉 = E|f ′〉 , (−1)F̂ |f ′〉 = −|f ′〉 . (112)

Indeed, using [Ĥ, Q̂] = 0 one finds

Ĥ|f ′〉 = ĤQ̂|b〉 = Q̂Ĥ|b〉 = Q̂E|b〉 = E|f ′〉 (113)

and similarly, using {(−1)F̂ , Q̂} = 0, one finds

(−1)F̂ |f ′〉 = (−1)F̂ Q̂|b〉 = −Q̂(−1)F̂ |b〉 = −Q̂|b〉 = −|f ′〉 . (114)

The state is properly normalized by |f〉 = 1√
E
|f ′〉 since E 6= 0, so that 〈f |f〉 = 1. Thus, the

states |b〉 and |f〉 are degenerate in energy and have opposite fermionic parity: they form a two
dimensional representation of the supersymmetry algebra.

The same procedure can be repeated starting from a fermionic eigenstes with E 6= 0 to
construct the bosonic energy eigenstate partner. One deduces that all energy levels with E 6= 0
are degenerate and with an equal number of bosonic and fermionic states, while states with
E = 0 are supersymmetric and, if they exists, are ground states of the model.

The Witten index Tr(−1)F̂

It is useful to define the Witten index as the number of bosonic minus the number of
fermionic ground states of vanishing energy

n
(E=0)
b − n(E=0)

f = Tr(E=0)(−1)F̂ (115)

here written also as the trace on the subspace of the Hilbert space formed by the states with
E = 0, multiplied inside the trace by the fermionic parity operator (−1)F̂ that gives the correct
sign.

Typically, one rewrite this as Tr(−1)F̂ , with the trace extended over the full Hilbert space,
as positive energy states cancels pairwise in the sum and do not contribute

Tr(−1)F̂ = n
(E=0)
b − n(E=0)

f (116)

however, this rewriting is formal as the infinite sum does not converge absolutely. To make
sure that the cancellation of positive energy states is achieved orderly one should regulate the
Witten index, as for example by defining it as

Tr[(−1)F e−βĤ ] (117)

that is found to be independent of the regulating parameter β: indeed, using the complete basis
of energy eigenstates one calculates

Tr[(−1)F̂ e−βĤ ] =
∑
k

〈k|(−1)F̂ e−βEk |k〉

= n
(E=0)
b − n(E=0)

f + e−βE1 − e−βE1 + e−βE2 − e−βE2 + . . .

= n
(E=0)
b − n(E=0)

f . (118)
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The limit β → 0 defines Tr(−1)F̂ properly, though the limit is not necessary as the sum is
independent of β.

The Witten index has topological properties in the sense that it is invariant under reasonable
deformations of the parameters of the theory (e.g. one may vary the coupling constants without
modifying the asymptotic behavior of the potential): in fact a single state cannot leave the
sector E = 0 as it must have a partner to form a doublet degenerate in energy. Only pairs
of states can leave the zero energy level by acquiring a small value of the energy, so that they
can form a supersymmetry doublet containing one bosonic and one fermionic state. Viceversa,
states with E 6= 0 are paired and the pair contains one boson and one fermion: if by varying
the parameters of the theory they acquire the value E = 0 they do not modify the value of the
Witten index.

Calculation of the Witten index

Let us calculate the Witten index in the class of models with N = 2 supersymmetries
presented above. Vacuum states |Ψ0〉 with E = 0 satisfy Ĥ|Ψ0〉 = 0 so that

〈Ψ0|Ĥ|Ψ0〉 =
1

2
〈Ψ0|(Q̂Q̂† + Q̂†Q̂)|Ψ0〉 =

1

2
|Q̂†|Ψ0〉|2 +

1

2
|Q̂|Ψ0〉|2 = 0 (119)

and they must be supersymmetric

Q̂|Ψ0〉 = 0 , Q̂†|Ψ0〉 = 0 . (120)

Let us solve these equations. Setting

Ψ0(x) =

(
f1(x)
f2(x)

)
we translate the equation Q̂|Ψ0〉 = 0 as

Q̂Ψ0(x) =
(

(p̂+ iW ′(x̂))ψ̂
)

Ψ0(x) =

(
0 −i∂x + iW ′(x)
0 0

)(
f1(x)
f2(x)

)
=

(
−i∂xf2(x) + iW ′(x)f2(x)

0

)
=

(
0
0

)
(121)

which is solved by the function
f2(x) = c2e

W (x) (122)

with c2 a constant, while f1(x) remains an arbitrary function. Similarly the equation Q̂†|Ψ0〉 = 0
takes the form

Q̂†Ψ0(x) =
(

(p̂− iW ′(x̂))ψ̂†
)

Ψ0(x) =

(
0 0

−i∂x − iW ′(x) 0

)(
f1(x)
f2(x)

)
=

(
0

−i∂xf1(x)− iW ′(x)f1(x)

)
=

(
0
0

)
(123)

which is solved by
f1(x) = c1e

−W (x) (124)

with c1 a constant, while f2(x) remains arbitrary.
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The combined equations are then solved by

Ψ0(x) =

(
c1e
−W (x)

c2e
+W (x)

)
. (125)

Requiring the wave functions to be normalizable fixes the constants c1 and c2. There are
essentially three different cases to consider:

1. Case W (x)
x→±∞−→ ∞

In such a situation the wave function (125) must have c2 = 0 to be normalizable. Thus
there is only one ground state of vanishing energy, and it has fermionic parity (−1)F = 1, as
its fermionic number vanishes

F̂Ψ0(x) =

(
0 0
0 1

)(
c1e
−W (x)

0

)
= 0 . (126)

The Witten index is calculated to be Tr(−1)F̂ = 1.

2. Case W (x)
x→±∞−→ −∞

Now eq. (125) must have c1 = 0 to be normalizable. There is again only one ground state
of vanishing energy, which has fermionic number F = 1 and parity (−1)F = −1, so that the

Witten index is Tr(−1)F̂ = −1.

3. Case W (x)
x→±∞−→ ±∞ or W (x)

x→±∞−→ ∓∞
In this case c1 = c2 = 0, so that there are no normalizables solutions with E = 0. The

Witten index vanishes, Tr(−1)F̂ = 0.

Let us make a brief comment. If there are no states with E = 0 one says that supersymmetry
is spontaneously broken: the ground state is not invariant under supersymmetry transforma-
tions. This happens in the third case above. The consequences of spontaneous breaking of
supersymmetry are particularly dramatic in quantum field theories, where there appears a
fermionic massless excitation called goldstino. However, in general, a vanishing value of the
Witten index does not allow to reach any conclusion, as there might exist several ground states
with E = 0 and different fermionic parities that balance each other to produce a vanishing
Witten index. If the Witten index is different form zero supersymmetry certainly cannot be
spontaneously broken: there always exists at least one ground states with E = 0, which is nec-
essarily invariant under supersymmetry. The concept of spontaneous breaking of symmetries
is of fundamental importance in QFT applications.

We may verify the topological properties of the Witten index in the previous model: one
can modify at will the prepotential W (x) without altering its asymptotic behavior, but these

deformations do not modify the value of Tr(−1)F̂ as the ground states are only fixed by the
asymptotics of W (x).

Classical action

One needs the classical action to be able to study the quantum model through path integrals.
The action makes use of Grassmann variables for treating the worldline fermions at the classical
level. Generically, classical models are useful to identify and construct quantum models. In
our case we have started directly with the quantum theory, so that we now present its classical
action, and then show that canonical quantization gives rise precisely to that quantum theory.

23



The action invariant under two supersymetries is given by

S[x, ψ, ψ̄] =

∫
dt

[
1

2
ẋ2 + iψ̄ψ̇ − 1

2

(
W ′(x)

)2

−W ′′(x)ψ̄ψ

]
(127)

where: x(t) is the coordinate of the particles in one dimension, ψ(t) and ψ̄(t) are the complex
Grassmann variables (ψ̄ denotes the complex conjugate of ψ) that describe additional degrees
of freedom. Alternatively, one may use the real Grassmann variables ψ1 and ψ2, representing
the real and imaginary part of ψ, ψ = (ψ1 + iψ2)/

√
2.

The prepotential W (x) satisfies suitable asymptotic conditions to guarantee bound states at
the quantum level. The choice W (x) = 1

2
ωx2 identified the so-called supersymmetric harmonic

oscillator.
The equations of motion are easily obtainable by extremizing the action

δS

δx(t)
= 0 ⇒ ẍ+W ′(x)W ′′(x) +W ′′′(x)ψ̄ψ = 0

δS

δψ̄(t)
= 0 ⇒ iψ̇ −W ′′(x)ψ = 0

δS

δψ(t)
= 0 ⇒ i ˙̄ψ +W ′′(x)ψ̄ = 0 . (128)

Let us now analyse its symmetries. A first obvious symmetry is the one related to the time
translational invariance, induced by t → t′ = t − a. Infinitesimally, it acts on the dynamical
variables as

δTx = aẋ

δTψ = aψ̇

δT ψ̄ = a ˙̄ψ (129)

and implies conservation of energy. Then there are also obvious U(1) phase transformations
acting on the complex Grassman variables: using an infinitesimal parameter α they read

δFx = 0

δFψ = iαψ

δF ψ̄ = −iαψ̄ (130)

and imply conservation of the fermion number. Finally, the action is invariant under infinites-
imal supersymmetry transformations (with ε and ε̄ Grassmann constants) given by

δQx = iεψ̄ + iε̄ψ

δQψ = −ε(ẋ− iW ′(x))

δQψ̄ = −ε̄(ẋ+ iW ′(x)) (131)

which produce conserved charges called supercharges. This is the most laborious symmetry to
verify.

24



By application of the Noether theorem, one finds the explicit expressions of the conserved
Noether charges

H =
1

2
ẋ2 +

1

2

(
W ′(x)

)2

+W ′′(x)ψ̄ψ

F = ψ̄ψ

Q = (ẋ+ iW ′(x))ψ

Q̄ = (ẋ− iW ′(x))ψ̄ . (132)

One may note that the commutator of two supersymmetry transformations generates a time
translation. In fact, calculating it onto the dynamical variable x one obtains

[δ(ε1), δ(ε2)]x = −aẋ (133)

with a = 2i(ε1ε̄2−ε2ε̄1). This is the characterizing property of supersymmetry: the composition
of two supersymmetries generate a time translation. The same property can be verified on the
variables ψ and ψ̄ (in this case on the right hand side there appears also terms proportional to
the equations of motion).

Hamiltonian formalism

To perform canonical quantization we have to reformulate the model in phase space. The
conjugate momentum to the variable x is obtained as usual by

p =
∂L

∂ẋ
= ẋ (134)

As for the Grassmann variables, they have equations of motions that are first order in time, so
that they are already in a hamiltonian form. The momentum conjugate to ψ is proportional
to ψ̄ as

π =
∂
L
L

∂ψ̇
= −iψ̄ (135)

where ∂
L

denotes left differentiation (one commutes the variable to the left and then removes
it). The corresponding hamiltonian is given by the Legendre transform of the lagrangian

H = ẋp+ ψ̇π − L

=
1

2
p2 +

1

2

(
W ′(x)

)2

+W ′′(x)ψ̄ψ (136)

and the phase space action is given by

S[x, p, ψ, ψ̄] =

∫
dt L =

∫
dt (pẋ+ iψ̄ψ̇ −H) . (137)

From the general discussion on the hamiltonian formulation reviewed earlier, one finds that the
basic independent and non vanishing Poisson brackets are

{x, p}
PB

= 1 , {ψ, ψ̄}
PB

= −i (138)

which are antisymmetric for commuting variables and symmetric for anticommuting ones. For
arbitrary phase space functions A and B their Poisson bracket is given explicitly by

{A,B}
PB

=
∂A

∂x

∂B

∂p
− ∂A

∂p

∂B

∂x
− i∂RA

∂ψ

∂
L
B

∂ψ̄
− i∂RA

∂ψ̄

∂
L
B

∂ψ
(139)
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and satisfies the properties listed in eq. (43) when the functions A and B have definite Grass-
mann parity.

The Noether charges calculated previously can be transcribed in phase space as

H =
1

2
p2 +

1

2

(
W ′(x)

)2

+W ′′(x)ψ̄ψ

F = ψ̄ψ

Q = (p+ iW ′(x))ψ

Q̄ = (p− iW ′(x))ψ̄ (140)

and satisfy a Poisson bracket algebra whose non vanishing terms are given by

{Q, Q̄}
PB

= −2iH , {F,Q}
PB

= iQ , {F, Q̄}
PB

= −iQ̄ . (141)

The first relation shows that the composition of two supersymmetries generates a translation
in time. This is the classical N = 2 susy algebra.

Canonical quantization is now straightforward, and one recognizes the same quantum theory
discussed earlier.

Path integrals and Witten index

One can now give a path integral representation of the Witten index. The regulated form of the
index Tr[(−1)F̂ e−βĤ ] can be obtained by a Wick rotation T → −iβ of the transition amplitude

e−iĤT . The corresponding path integral has an euclidean action SE, obtained from (127) by
Wick rotation (iS[x, ψ, ψ̄]→ −SE[x, ψ, ψ̄])

SE[x, ψ, ψ̄] =

∫ β

0

dτ

[
1

2
ẋ2 + ψ̄ψ̇ +

1

2

(
W ′(x)

)2

+W ′′(x)ψ̄ψ

]
. (142)

Also, one must recall that a trace in the Hilbert space is calculated by a path integral with pe-
riodic boundary conditions (P ) for the bosonic variables, and antiperiodic boundary conditions
(A) for the fermionic ones

Tr e−βĤ =

∫
P

Dx
∫
A

DψDψ̄ e−SE [x,ψ,ψ̄] (143)

The insertion of the operator (−1)F̂ creates instead a supertrace, and has the effect of changing
the boundary conditions on the fermions from antiperiodic to periodic

Tr [(−1)F̂ e−βĤ ] =

∫
P

DxDψDψ̄ e−SE [x,ψ,ψ̄] . (144)

Later on we sketch the calculation of the Witten index using this path integral representa-
tion. The calculation is simplified by using the fact that the Witten index is invariant under
continuous deformations of the parameters of the theory, that can be used to our advantage.
One can deform the prepotential as

W (x)→ λW (x) (145)

with positive λ, and then take the limit λ→∞. The result must be independent of λ, and one
finds that the index is computed by

Tr [(−1)F̂ e−βĤ ] =
∑
{x0}

W ′′(x0)

|W ′′(x0)|
(146)
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where the sum is over all critical points {x0}, defined as the points of local maxima and minima
that satisfy W ′(x0) = 0. This result exemplify how the index connects topological properties
to local properties (the critical points).

It is easily seen to reproduce the values obtained by the canonical analysis: for case 1 there
is always one more minimum than maxima, so that Tr (−1)F̂ = 1, for case 2 there is always

one more maximum than minima, so that Tr (−1)F̂ = −1, for case 3 the number of maxima

and minima concide and Tr (−1)F̂ = 0.

Sketch of the calculation

One must sum over all periodic trajectories, i.e. trajectories that close on themselves after an
euclidean time β. We indicate such trajectories by [x(τ), ψ(τ), ψ̄(τ)]. The leading contribution
to the path integral for λ → ∞ is associated to the constant trajectories [x0, 0, 0], where
the constants x0 are the critical points of the prepotential W (x), defined by the equation
W ′(x0) = 0. They solve the equation of motion and are obviously periodic. Thus, the leading
classical approximation to the path integral is given by

Tr [(−1)F̂ e−βĤ ] ∼
∑
{x0}

e−SE [x0,0,0] =
∑
{x0}

e−β
λ2

2
(W ′(x0))2 =

∑
{x0}

1 .

Then one must add the semiclassical corrections due to the quantum fluctuations around the
“classical vacua” [x0 + δx(τ), ψ(τ), ψ̄(τ)] that are identified by considering the quadratic part
in [δx(τ), ψ(τ), ψ̄(τ)] from the expansion of the action around [x0, 0, 0]. These corrections
correspond to calculating gaussian path integrals and give rise to functional determinants. Let
us try to calculate them. Expanding the action in a Taylor series around the trajectory [x0, 0, 0]
and keeping only the quadratic part in [δx(τ), ψ(τ), ψ̄(τ)], one finds

SE[x, ψ, ψ̄] =

∫ β

0

dτ

[
1

2
(∂τδx)2 + ψ̄ψ̇ +

λ2

2

(
W ′(x0) +W ′′(x0)δx+ · · ·

)2

+ λ(W ′′(x0) + · · · )ψ̄ψ
]

=

∫ β

0

dτ

[
1

2
δx[−∂2

τ + λ2(W ′′(x0))2]δx+ ψ̄[∂τ + λW ′′(x0)]ψ

]
+ · · · . (147)

The gaussian path integral over [δx(τ), ψ(τ), ψ̄(τ)] produces

Tr [(−1)F̂ e−βĤ ] =
∑
{x0}

∫
PCB

DδxDψDψ̄ e−SE [x0+δx,ψ,ψ̄]

=
∑
{x0}

DetP [∂τ + λW ′′(x0)]

Det
1/2
P [−∂2

τ + λ2(W ′′(x0))2]
. (148)

These determinants are defined by the product of the eigenvalues. A basis of periodic functions
with period β is given by

fn(τ) = e
2πinτ
β n ∈ Z . (149)

They are also the eigenfunctions of the differential operators that appear in (148)

[∂τ + λW ′′(x0)]fn(τ) = λnfn(τ) ⇒ λn =
2πin

β
+ λW ′′(x0)

[−∂2
τ + (λW ′′(x0))2]fn(τ) = Λnfn(τ) ⇒ Λn =

(2πn

β

)2

+ (λW ′′(x0))2
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so that

DetP [∂τ + λW ′′(x0)]

Det
1/2
P [−∂2

τ + λ2(W ′′(x0))2]
=
∏
n∈Z

λn

Λ
1/2
n

=
∏
n∈Z

2πin
β

+ λW ′′(x0)[(
2πn
β

)2

+ (λW ′′(x0))2
]1/2

=
λW ′′(x0)

|λW ′′(x0)|
∏
n>0

[2πin
β

+ λW ′′(x0)][−2πin
β

+ λW ′′(x0)](
2πn
β

)2

+ (λW ′′(x0))2

=
W ′′(x0)

|W ′′(x0)|
. (150)

The result is indeed independent of λ, and we have obtained the following value of the Witten
index

Tr [(−1)F̂ e−βĤ ] =
∑
{x0}

W ′′(x0)

|W ′′(x0)|
. (151)

N = 2, D = 1 superspace

Superspace is a useful construction that gives a geometrical interpretation of supersymme-
try. It allows to formulate theories that are manifestly supersymmetric. It is constructed by
adding anticommuting coordinates to the usual space-time coordinates, and supersymmetry
transformations are intepreted as arising from translations in the anticommuting directions.
We exemplify this construction for the previous mechanical model with N = 2 supersymmetry,
considered as a theory in (0 + 1) space-time dimensions. The extension to (3 + 1) space-time
dimensions is conceptually similar, but algebraically more demanding. The N = 1 superspace
is also presented, as it is used in worldline description of spin 1/2 fields.

Time translational invariance
To appreciate the ideas underlying the construction of superspace, it is useful to review

in a critical way the main points that guarantee the construction of actions invariant under
translations in time. They will guide us in the construction of superspace, where supersymmetry
is interpreted geometrically as a translation along Grassmann directions.

In the case of a single degree of freedom carried by the variable x(t), an infinitesimal time
translation (t→ t− a) is given by a transport term

δ
T
x(t) ≡ x′(t)− x(t) = aẋ(t) = (−iaH)x(t) (152)

where in the last form we have used the differential operator H ≡ i ∂
∂t

. This operator is
interpreted as the generator of a one parameter group of abelian transformations, the group of
time translations that is isomorphic to R (the real numbers with the addition as group product).
A finite transformation can be obtained by exponentiation x′(t) = e−iaHx(t) = x(t+ a). Time
derivatives of x(t) transform similarly, with a rule having the same general structure

δ
T
ẋ(t) ≡ ẋ′(t)− ẋ(t) =

∂

∂t
(δ
T
x(t)) = aẍ(t) = (−iaH)ẋ(t) . (153)
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Invariant actions can be obtained as integrals in time of a lagrangian that depends on time
only implicitly, that is through the dynamical variables and their derivatives only,

S[x] =

∫
dt L(x, ẋ) . (154)

Indeed, as consequence of (152) and (153) it follows that

δ
T
L(x, ẋ) = δ

T
x
∂L

∂x
+ δ

T
ẋ
∂L

∂ẋ
= a

dx

dt

∂L

∂x
+ a

dẋ

dt

∂L

∂ẋ

= a
d

dt
L(x, ẋ) =

d

dt
(aL(x, ẋ)) (155)

so that

δ
T
S[x] =

∫
dt δ

T
L(x, ẋ) =

∫
dt

d

dt
(aL(x, ẋ)) = 0 (156)

which vanishes up to boundary terms. This is enough to prove invariance.
N = 2 superspace
The superspace R1|2 (N = 2 superspace in d = 1) is defined by the coordinates

(t, θ, θ̄) ∈ R1|2 (157)

where (θ, θ̄) are complex Grassmann variables. The generator of time translations is again the
differential operator

H = i
∂

∂t
. (158)

In addition, one introduces the differential operators

Q =
∂

∂θ
+ iθ̄

∂

∂t
, Q̄ =

∂

∂θ̄
+ iθ

∂

∂t
(159)

that realize the algebra of N = 2 supersymmetry

{Q, Q̄} = 2H , {Q,Q} = {Q̄, Q̄} = 0 , [Q,H] = [Q̄,H] = 0 . (160)

Translations generated by these differential operators on functions of superspace produce su-
persymmetry transformations.

Superfields
Superfields are functions of superspace, and are used as dynamical variables in the construc-

tion of supersymmetric models. Let us consider the example of a scalar superfield X(t, θ, θ̄),
taken to be Grassmann even. Expanded in components (that is performing a Taylor expansion
in the anticommuting variables) it reads

X(t, θ, θ̄) = x(t) + iθψ(t) + iθ̄ψ̄(t) + θθ̄F (t) . (161)

The last component is traditionally called F (and should not be confused with the fermion num-
ber). Supersymmetry transformations on superfields are generated by the differential operators
Q and Q̄

δX(t, θ, θ̄) = (ε̄Q+ εQ̄)X(t, θ, θ̄) (162)
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where ε and ε̄ are Grassmann parameters. This definition generalizes the similar one for in-
finitesimal time translation given in eq. (152) Expanding both sides in components one obtains

δx = iεψ̄ + iε̄ψ

δψ = −ε(ẋ+ iF )

δψ̄ = −ε̄(ẋ− iF )

δF = ε̄ψ̇ − ε ˙̄ψ (163)

to be compared with (131). In general, one call superfields only those functions of superspace
that transform as (162) under supersymmetry transformation.

Covariant derivatives and supersymmetric actions
To identify invariant actions it is useful to introduce the covariant derivatives (covariant

under supersymmetry transformations), defined by

D =
∂

∂θ
− iθ̄ ∂

∂t
, D̄ =

∂

∂θ̄
− iθ ∂

∂t
(164)

and characterized by the fundamental property of anticommuting with the generators of super-
symmetry in (159)

{D,Q} = {D, Q̄} = {D̄,Q} = {D̄, Q̄} = 0 . (165)

One may note that D and D̄ differ from the operators Q and Q̄ only by the sign of the second
term, and satisfy the algebra

{D, D̄} = −2i∂t , {D,D} = {D̄, D̄} = 0 . (166)

Thanks to these properties, covariant derivatives of superfields are again superfields, meaning
that they transform under supersymmerty as the original superfield in (162)

δ(DX) = D(δX) = D
(
(ε̄Q+ εQ̄)X

)
= (ε̄Q+ εQ̄)DX . (167)

Similarly for D̄X. As a consequence a lagrangian L(X,DX, D̄X), function of the superspace
point only implicitly through dynamical superfields and their covariant derivatives, (that is
without any explicit dependence on the point of superspace) transforms as

δL(X,DX, D̄X) = (ε̄Q+ εQ̄)L(X,DX, D̄X) . (168)

Actions defined by integrating over the whole superspace

S[X] =

∫
dtdθ̄dθ L(X,DX, D̄X) (169)

are manifestly invariant (up to boundary terms), as they transform as integrals of total deriva-
tives.

In particular, the model described by

S[X] =

∫
dtdθ̄dθ

(
1

2
DXD̄X +W (X)

)
(170)

that depends on an arbitrary function W (x) is manifestly supersymmetric. A direct integration
over the anticommuting coordinates of superspace shows that it reproduces the action in eq.
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(127). In a more elegant fashion, one uses the algebra of covariant derivatives to obtain the
same final result. Let us show this in a telegraphic way. Up to total derivatives one may write

S[X] =

∫
dtdθ̄dθ

(
1

2
DXD̄X +W (X)

)
=

∫
dtD̄D

(
1

2
DXD̄X +W (X)

) ∣∣∣
θ,θ̄=0

=

∫
dt

(
−1

2
D̄DXDD̄X − iDXD̄Ẋ +W ′′(X)D̄XDX +W ′(X)D̄DX

) ∣∣∣
θ,θ̄=0

and using the projections on the first component of the various superfields

X
∣∣∣
θ,θ̄=0

= x(t)

DX
∣∣∣
θ,θ̄=0

= iψ(t)

D̄X
∣∣∣
θ,θ̄=0

= iψ̄(t)

DD̄X
∣∣∣
θ,θ̄=0

= −(F + iẋ)

D̄DX
∣∣∣
θ,θ̄=0

= F − iẋ

one finds (up to total derivatives)

S[X] =

∫
dt

(
1

2
ẋ2 +

1

2
F 2 + iψ̄ψ̇ +W ′(x)F −W ′′(x)ψ̄ψ

)
. (171)

Eliminating the auxiliary field F through its algebraic equation of motion (F = −W ′(x)) one
recovers the action in (127), which is guaranteed to be supersymmetric by the superspace
construction.

N = 1, D = 1 superspace

A superspace can also be constructed for N = 1 supersymmetry, with a real (hermitian)
supercharge. It is used in worldline descriptions of spin 1/2 fields, where the γi matrices
appearing in the Dirac equations are realized on the worldline by real Grassmann variables ψi

(worldline Majorana fermions). Indeed, the simple model

S[x, ψ] =

∫
dt

(
1

2
ẋiẋi +

i

2
ψiψ̇i

)
(172)

has N = 1 supersymmetry and appears in first quantized descriptions of the Dirac field. One
can give a superspace construction to prove its supersymmetry. The N = 1 supersymmetry
algebra {Q,Q} = 2H is realized by the differential operators

Q =
∂

∂θ
+ iθ

∂

∂t
, H = i

∂

∂t
(173)

that act on functions of a superspace with coordinates (t, θ). The susy covariant derivative is
given by

D =
∂

∂θ
− iθ ∂

∂t
(174)
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and anticommutes with Q. Using the superfields

X i(t, θ) = xi(t) + iθψi(t) (175)

one can construct in superspace the manifestly supersymmetric action

S[X] =
i

2

∫
dtdθDX iẊ i (176)

which reduces to (172) when passing to the superfield components.
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