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(Appunti per il corso di Fisica Teorica 2 – 2016/17)

Fiorenzo Bastianelli

Fermions at the classical level can be described by Grassmann variables, also known as
anticommuting numbers or fermionic variables. Grassmann variables allow to define “classical”
models whose quantization produce degrees of freedom that satisfy a Pauli exclusion principle.
Here we use them to parametrize the degrees of freedom associated to spin. Models with
Grassmann variables are often called “pseudoclassical”, as the spin at the classical level is a
formal construction (the value of spin vanish for ~→ 0 and cannot be measured classically).

In worldline approaches to quantum field theories, one describes relativistic point particles
with spin by their worldline coordinates that identify the particle position in space-time, and
by Grassmann variables that take into account the additional spin degrees of freedom. From
the worldline point of view Grassmann variables have equations of motion that are first order
in time. They satisfy the equivalent of a Dirac equation in one dimension (the worldline can
be considered as a 0+1 dimensional space-time, with the time coordinate corresponding to the
only dimension while space is just a point). They can be interpreted as worldline fermions
since they obey the Pauli exclusion principle. The latter arises as the Grassmann variables are
quantized with anticommutators. Of course there is no concept of spin in 0 + 1 dimensions, as
there is no rotation group in a zero dimensional space. On the other hand, the spin of the point
particle as an observable living in the 3 + 1 minkowskian spacetime emerges precisely form the
quantization of the Grassmann variables.

In this chapter we study the path integral quantization of models with Grassmann variables,
and refer to them as path integrals for fermions, or fermionic path integrals. In a hypercon-
densed notation the resulting formulae describe the quantization of higher dimensional fermionic
quantum field theories as well, including Dirac fields.

We start introducing Grassmann variables and develop canonical quantization for mechan-
ical models containing Grassmann variables. Then we derive a path integral representation of
the transition amplitude for fermionic systems starting from its operatorial expression, using a
suitable definition of fermionic coherent states. To exemplify the use of Grassmann variables, we
present a class of supersymmetric mechanical models, where bosonic and fermionic variables are
mixed together by the supersymmetry transformation rules. These models allow to introduce
supersymmetry in one of its simplest realization. As we shall see in later chapters, worldline
supersymmetry is a guiding principle for describing relativistic spinning particles. Eventually,
we present the construction of the N = 2 and N = 1 superspaces in one dimension. Superspaces
are useful as they allow to formulate supersymmetric theories in a manifestly supersymmetric
way. The N = 2 superspace is used to reproduce the mechanical models described previously,
while the N = 1 superspace is used in the worldline treatment of Dirac fields.
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1 Grassmann algebras

A n-dimensional Grassmann algebra Gn is generated by a set of generators θi with i = 1, ..., n
that satisfy

θiθj + θjθi = 0 (1)

or, equivalently, in terms of the anticommutator

{θi, θj} = 0 . (2)

In particular any fixed generator squares to zero

θ2
i = 0 (3)

suggesting already at the classical level the essence of the Pauli exclusion principle, according
to which one cannot put two identical fermions in the same quantum state. Physicists often
call these generators anticommuting numbers.

One can multiply these generators and their products by real or complex numbers, and form
polynomials that are used to define functions of the Grassmann variables (i.e. the elements of
the Grassmann algebra). For example, for n = 1 there is only one Grassmann variable θ and
an arbitrary function is given by

f(θ) = f0 + f1θ (4)

where f0 and f1 are taken to be either real or complex numbers. Similarly, for n = 2 one has

f(θ1, θ2) = f0 + f1θ1 + f2θ2 + f3θ1θ2 . (5)

A term with θ2θ1 is not written as it is not independent of θ1θ2, as θ2θ1 = −θ1θ2. Terms with
an even number of θ’s are called Grassmann even (or equivalently even, commuting, bosonic).
Terms with an odd number of θ’s are called Grassmann odd (or equivalently odd, anticom-
muting, fermionic). Generic functions are always defined in terms of their Taylor expansions,
which contain a finite number of terms because of the Grassmann property. For example, the
exponential function eθ means just eθ = 1 + θ because θ2 = 0.

Derivatives with respect to Grassmann variables are very simple. As any function can be at
most linear with respect to a fixed Grassmann variable, its derivative is straightforward, and
one has to keep track just of signs. Left derivatives are defined by removing the variable from
the left of its Taylor expansion: for example for the function f(θ1, θ2) given above

∂
L
f(θ1, θ2)

∂θ1

= f1 + f3θ2 . (6)

Similarly, right derivatives are obtained by removing the variable from the right

∂
R
f(θ1, θ2)

∂θ1

= f1 − f3θ2 (7)

where a minus sign emerges because one has first to commute θ1 past θ2. Equivalently, using
Grassmann increments δθ, one may write

δf = δθ
∂
L
f

∂θ
=
∂
R
f

∂θ
δθ (8)
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which makes evident how to keep track of signs. If not specified otherwise, we use left derivatives
and omit the corresponding subscript.

Integration can be defined, according to Berezin, to be identical with differentiation∫
dθ ≡ ∂

L

∂θ
. (9)

This definition has the virtue of producing a translational invariant measure, that is∫
dθf(θ + η) =

∫
dθf(θ) . (10)

This statement is easily proven by a direct calculation∫
dθf(θ + η) =

∫
dθ (f0 + f1θ + f1η) = f1 =

∫
dθf(θ) . (11)

Grassmann variables can be defined to be either real or complex. A real variable satisfies

θ̄ = θ (12)

with the bar indicating complex conjugation. For products of Grassmann variables the complex
conjugate is defined to include an exchange of their position

θ1θ2 = θ̄2θ̄1 . (13)

Thus the complex conjugate of the product of two real variables is purely imaginary

θ1θ2 = −θ1θ2 . (14)

It is iθ1θ2 that is real, as the complex conjugate of the imaginary unit carries the additional
minus sign to obtain a formally real object

iθ1θ2 = iθ1θ2 . (15)

Complex Grassmann variables η and η̄ can always be decomposed in terms of two real Grass-
mann variables θ1 and θ2 by setting

η =
1√
2

(θ1 + iθ2) , η̄ =
1√
2

(θ1 − iθ2) . (16)

These are the definitions that are most useful for physical applications, and one requires that
real variables become hermitian operators upon quantization.

Having defined integration over Grassmann variables, we consider in more details the gaus-
sian integration, which is at the core of fermonic path integrals. For the case of a single real
Grassmann variable θ the gaussian function is trivial, e−aθ

2
= 1, since θ2 = 0 as θ anticom-

mutes with itself. One needs at least two real Grassmann variables θ1 and θ2 to have a nontrivial
exponential function with an exponent quadratic in Grassmann variables

e−aθ1θ2 = 1− aθ1θ2 (17)

3



where a is either a real or complex number. With the above definitions the corresponding
“gaussian integral” is computed straghtforwardly∫

dθ1dθ2 e
−aθ1θ2 = a . (18)

Defining the antisymmetric 2× 2 matrix Aij by

A =

(
0 a
−a 0

)
(19)

one may rewrite the result of the Grassmann gaussian integration as∫
dθ1dθ2 e

− 1
2
θiA

ijθj = det
1
2A . (20)

The square root of the determinant of an antisymmetric matrix A is called the pfaffian, and is
often indicated by PfaffA. Note indeed that the determinant is always positive definite for real
antisymmetric matrices, and its square root is well defined (by analytic extensions it is also
well defined for antisymmetric matrices with complex entries). It is easy to see that the above
formula extends to an even number n = 2m of real Grassmann variables, so that one may write
in general ∫

dnθ e−
1
2
θiA

ijθj = det
1
2A (21)

with the measure normalized as dnθ ≡ dθ1dθ2 . . . dθn. Indeed with an orthogonal transformation
one can skew-diagonalize the antisymmetric matrix Aij and put it in the form

0 a1

−a1 0
0 a2

−a2 0
.
.

0 am
−am 0


. (22)

The orthogonal transformation leaves the integration measure invariant and one immediately

gets the above result with det
1
2A = a1a2 · · · am. As a cautionary note, to compute correctly the

jacobian under a change of variables one should recall the definition of the integration in terms
of derivatives (the Berezin integration).

In an analogous way, one finds that gaussian integration over complex Grassmann variables
(ηi, η̄i) produce a determinant ∫

dnη̄dnη e−η̄iA
ijηj = detA (23)

where the measure is now defined by dnη̄dnη ≡ dη̄1dη1dη̄2dη2 . . . dη̄ndηn.
For applications to dynamical models and subsequent path integral quantization, it is useful

to consider infinite dimensional Grassmann algebras (n→∞). Then one may use Grassmann
valued functions of time, i.e. θi  θ(t). For different values of t one has different generators
of the algebra, so that properties such as θ2(t) = 0 and θ(t1)θ(t2) = −θ(t2)θ(t1) hold. They are
used to describe interesting mechanical systems.
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2 Pseudoclassical models and canonical quantization

To gain some familiarity with the use of Grassmann numbers as dynamical variables we consider
the fermionic harmonic oscillator, an example that by itself contains the essence of all fermionic
systems.

Classically, it is described by the function ψ(t) and its complex conjugate ψ̄(t) that take
values in a Grassmann algebra (t denotes the time). The Grassmann property implies generic
relations like ψ(t)ψ(t) = 0, ψ(t)ψ(t′) = −ψ(t′)ψ(t), ψ̇(t)ψ̇(t) = 0, ψ(t)ψ̇(t) = −ψ̇(t)ψ(t), etc.,
where dots denote time derivatives, ψ̇ = d

dt
ψ. These relations can be used in extremizing the

action, for testing the presence of symmetries, and so on.
Before introducing the action of the fermionic harmonic oscillator, and for gaining some

intuition, let us rewrite the action of the usual bosonic harmonic oscillator in phase space by
using complex combinations of the coordinate and momentum (x, p), as defined by

a =
1√
2ω

(ωx+ ip) , ā =
1√
2ω

(ωx− ip) . (24)

Up to boundary terms, one finds

S[x, p] =

∫
dt
(
pẋ− 1

2
(p2 + ω2x2)

)
→ S[a, ā] =

∫
dt (iāȧ− ωāa) . (25)

Upon quantization the complex variables (a, ā) give rise to the annhilation/creation operators
(â, â†) that satisfy the algebra [â, â†] = ~. They are used in the Fock construction of the Hilbert
space of the harmonic oscillator. For convenience, it is reviewed later on in sec. 2.1.

The dynamics of the fermionic harmonic oscillator is similarly described by the complex
Grassmann valued functions ψ(t) and ψ̄(t) and is fixed by the action

S[ψ, ψ̄] =

∫
dt (iψ̄ψ̇ − ωψ̄ψ) . (26)

The action is formally real (up to boundary terms), just like its bosonic cousin in (25). The
equation of motion is obtained by extremizing the action, and easily solved

iψ̇ − ωψ = 0 =⇒ ψ(t) = ψ0 e
−iωt (27)

where ψ0 a suitable initial datum. This equation of motion may be called the Dirac equation
in a 0+1 dimensional space time. Indeed one may rewrite it as (γ0∂0 +ω)ψ = 0, with γ0 = −i,
x0 = t, and with ω playing the role of the Dirac mass.

Canonical quantization is achieved by considering the hamiltonian structure of the model.
We sketch it now, postponing briefly a general discussion of the phase space structure associated
to Grassmann variables. The momentum π conjugate to ψ is defined by

π ≡ ∂
L
L

∂ψ̇
= −iψ̄ (28)

which shows that the systems is already in a hamiltonian form, the conjugate momenta being
ψ̄ up to a factor. The classical Poisson bracket {π, ψ}

PB
= −1 is rewritten as {ψ, ψ̄}

PB
= −i,

and has the property of being symmetric for fermionic systems (this will be discussed in a short
while).
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Quantizing with anticommutators (fermionic system must be treated that way) one obtains

{ψ̂, ψ̂†} = ~ , {ψ̂, ψ̂} = {ψ̂†, ψ̂†} = 0 (29)

that is, the classical variables ψ and ψ̄ are promoted to linear operators ψ̂ and ψ̂† satisfying
anticommutation relations that are set to be equal to i~ times the value of the classical Poisson
brackets. Setting ~ = 1 for simplicity, one finds the fermionic creation/annihilation algebra

{ψ̂, ψ̂†} = 1 , {ψ̂, ψ̂} = {ψ̂†, ψ̂†} = 0 (30)

that can be realized in a two dimensional Hilbert space, and with the correct hermiticity
properties. The Hilbert is explicitly constructed à la Fock, considering ψ̂ as destruction operator
and ψ̂† as creation operator1. One starts defining the Fock vacuum |0〉, fixed by the condition
ψ̂|0〉 = 0. A second state is obtained acting with ψ̂†

|1〉 = ψ̂†|0〉 . (31)

No other states can be obtained acting again with the creation operator ψ̂† as (ψ̂†)2 = 0.
Normalizing the Fock vacuum to unity, 〈0|0〉 = 1, with 〈0| = |0〉†, one finds that these two
states are orthonomal

〈m|n〉 = δmn m,n = 0, 1 (32)

and thus span a two-dimensional Hilbert space, F2 = Span{|0〉, |1〉}. In terms of matrices one
finds the realization

ψ̂ −→
(
〈0|ψ̂|0〉 〈0|ψ̂|1〉
〈1|ψ̂|0〉 〈1|ψ̂|1〉

)
=

(
0 〈0|0〉
0 〈1|0〉

)
=

(
0 1
0 0

)
ψ̂† −→

(
〈0|ψ̂†|0〉 〈0|ψ̂†|1〉
〈1|ψ̂†|0〉 〈1|ψ̂†|1〉

)
=

(
〈0|1〉 0
〈1|1〉 0

)
=

(
0 0
1 0

)
. (33)

The Fock vacuum is indeed the ground state of the fermionic oscillator, whose quantum Hamil-
tonian Ĥ = ω(ψ̂†ψ̂ − 1

2
) is obtained from the classical one by choosing a suitable ordering of

the operators upon quantization. Indeed the classical hamiltonian is given by the Legendre
transform

H = ψ̇π − L = ωψ̄ψ =
ω

2
(ψ̄ψ − ψψ̄) . (34)

The last form is a classically equivalent way of writing it, and it is the one that is quantized to
resolve the ordering ambiguities

Ĥ =
ω

2
(ψ̂†ψ̂ − ψ̂ψ̂†) = ω

(
ψ̂†ψ̂ − 1

2

)
. (35)

The last expression is obtained by using the first relation in (30). Note also that in the Legendre
transform the order of ψ̇ and π matters, and we have used the one that follows from having
defined the conjugate momentum (28) with left derivatives.

Hamiltonian structure and canonical quantization

Path integrals for fermions can be derived from the canonical formalism, just as in the

1Their role could also be reversed for fermionic systems.
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bosonic case. For that we need first to review the hamiltonian formalism and the canonical
quantization of mechanical systems with Grassmann variables.

The hamiltonian formalism aims at producing equations of motion that are first order
differential equations in time. For a simple bosonic model with phase space coordinates (x, p),
the phase space action is usually written in the form

S[x, p] =

∫
dt
(
pẋ−H(x, p)

)
. (36)

The first term with derivatives (the pẋ term) is called the symplectic term, and fixes the Poisson
bracket structure of phase space. Up to total derivatives it can be written in a more symmetrical
form, with the time derivatives shared equally by x and p

S[x, p] =

∫
dt
(1

2
(pẋ− xṗ)−H(x, p)

)
=

∫
dt
(1

2
za(Ω−1)abż

b −H(z)
)

(37)

where we have denoted collectively the phase space coordinates by za = (z1, z2) = (x, p). The
symplectic term contains the constant invertible matrix

(Ω−1)ab =

(
0 −1
1 0

)
(38)

with inverse

Ωab =

(
0 1
−1 0

)
. (39)

The latter is used to define the Poisson bracket between two generic phase space functions F
and G

{F,G}
PB

=
∂F

∂za
Ωab ∂G

∂zb
. (40)

In particular, one finds that the Poisson bracket of the phase space coordinates themselves is
given by

{za, zb}
PB

= Ωab . (41)

This coincides with standard definitions. The Poisson bracket satisfies the following properties:

{F,G}
PB

= −{G,F}
PB

(antisymmetry)

{F,GH}
PB

= {F,G}
PB
H +G{F,H}

PB
(Leibniz rule) (42)

{F, {G,H}
PB
}
PB

+ {G, {H,F}
PB
}
PB

+ {H, {F,G}
PB
}
PB

= 0 (Jacobi identity) .

These properties make it consistent to adopt the canonical quantization rules of substituting
the fundamental variables za by linear operators ẑa acting on a Hilbert space of physical states,
with commutation relations fixed to be i~ times the value of the classical Poisson brackets

[ẑa, ẑb] = i~Ωab . (43)

This prescription is consistent as both sides satisfy the same algebraic properties, listed in (42)
for the Poisson brackets.

More generally, phase space functions F (z) are elevated to operators F̂ (ẑ) (after fixing
eventual ordering ambiguities) with commutation relations that take the form

[F̂ (ẑ), Ĝ(ẑ)] = i~{F,G}
PB

+ higher order terms in ~ . (44)
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This set up can be extended to models with Grassmann variables. The basic structure
remains unaltered, and one must only take care of signs arising from the anticommuting sector.
Let us show how this is done.

We denote collectively the phase space coordinates by ZA = (xi, pi, θ
α), with (xi, pi) the

usual Grassmann even phase space variables and θα the Grassmann odd variables. We consider
a phase space action of the form

S[ZA] =

∫
dt

(
1

2
ZA(Ω−1)ABŻ

B −H(Z)

)
(45)

where the symplectic term depends on a constant invertible matrix (Ω−1)AB with inverse ΩAB.
Again this term must be written splitting the time derivatives democratically between all
variables, as in (37). The symplectic term and the hamiltonian are taken to be Grassmann
even (i.e. commuting objects). Then, it is seen that ΩAB is antisymmetric in the sector related
to the bosonic coordinates, and symmetric in the sector belonging to the Grassmann variables
(other off-diagonal entries vanish). That is, denoting the variables by ZA = (za, θα) with za

bosonic and θα fermionic, the matrix ΩAB (as well as its inverse) has a block diagonal form

ΩAB =

(
Ωab 0
0 Ωαβ

)
(46)

with Ωab antisymmetric and Ωαβ symmetric.
The matrix ΩAB is used to define the Poisson bracket by

{F,G}
PB

=
∂
R
F

∂ZA
ΩAB ∂LG

∂ZB
(47)

where both right and left derivatives are used. In particular one finds

{ZA, ZB}
PB

= ΩAB . (48)

Phase space functions can be restricted to have a definite Grassmann parity. Given any
such function F , we denote its Grassmann parity by (−1)εF , where εF = 0 if F is Grassmann
even (bosonic function) and εF = 1 if F is Grassmann odd (fermionic function). Then, one
finds that the definition (47) satisfies a graded generalization of the properties in (42), namely

{F,G}
PB

= (−1)εF εG+1{G,F}
PB

{F,GH}
PB

= {F,G}
PB
H + (−1)εF εGG{F,H}

PB
(49)

{F, {G,H}
PB
}
PB

+ (−1)εF (εG+εH){G, {H,F}
PB
}
PB

+ (−1)εH(εF+εG){H, {F,G}
PB
}
PB

= 0 .

The equations of motion are first order in time. They can be derived minimizing the action
and can be expressed in term of the Poisson brackets

ŻA = ΩAB ∂LH

∂ZB
→ ŻA = {ZA, H}

PB
. (50)

These are the Hamilton’s equations of motion.
The properties of the Poisson brackets make it consistent to adopt the canonical quanti-

zation rules, that consist in promoting the phase space coordinates ZA to operators ẐA with
commutation/anticommutation relation fixed by their classical Poisson brackets

[ẐA, ẐB} = i~{ZA, ZB}
PB

= i~ΩAB (51)
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where we have employed the compact notation

[· , ·} =

{
{· , ·} anticommutator if both variables are fermionic

[· , ·] commutator otherwise
(52)

which is often called “graded commutator”. Indeed, the graded commutator satisfies identities
similar to those for the Poisson brackets in (49), and makes it consistent to adopt the given
quantization rules.

Our quick exposition becomes clearer by working through some simple examples.

Examples

(i) Single real Grassmann variable ψ (“single Majorana fermion in one dimension”).
Taking as phase space lagrangian

L =
i

2
ψψ̇ −H(ψ) (53)

which is formally real and produces equation of motion of the first order in time, one finds
Ω−1 = i, Ω = −i, and Poisson bracket at equal times {ψ, ψ}

PB
= −i. The dynamical variable

ψ(t) is often called a Majorana fermion in one dimension, as it satisfies the Dirac equation in one
dimension plus a reality condition (akin to the Majorana condition used in four dimensions).
One notices that the only possible Grassmann even hamiltonian is a constant, so that the model
is rather trivial. One verifies in this example that the phase space can be odd dimensional if
Grassmann variables are present. The model is quantized by introducing the hermitian operator
ψ̂ with anticommutator

{ψ̂, ψ̂} = ~ . (54)

The quantum theory is also trivial, as one represents irreducibly this algebra in a one dimen-
sional Hilbert space, with the operator ψ̂ acting as multiplication by the constant

√
~/2. This

Hilbert space has no room for any nontrivial dynamics, as there is only the vacuum state.
(ii) Several real Grassmann variables ψi (“Majorana fermions in one dimension”).

For the case of several real Grassmann variables one may take as phase space lagrangian

L =
i

2
ψiψ̇i −H(ψi) i = 1, ..., n (55)

and one finds (Ω−1)ij = iδij, Ωij = −iδij. The Poisson brackets at equal times read as
{ψi, ψj}

PB
= −iδij. Quantization is obtained by considering the anticommutation relations

{ψ̂i, ψ̂j} = ~δij (56)

which is recognized to be proportional to the Clifford algebra of the gamma matrices, appearing
in the Dirac equation in n euclidean dimensions. Indeed setting ψ̂i =

√
~/2 γi turns the above

anticommutation relations into the Clifford algebra

{γi, γj} = 2δij (57)

which is the defining properties of the gamma matrices of the Dirac equation

(γi∂i +m)Ψ(x) = 0 . (58)

It is known that the algebra (57) is realized in a complex vector space of dimension 2[n
2

], where
[n

2
] indicates the integer part of n

2
. For example, for n = 2 and n = 3 the gamma matrices
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are 2 by 2, for n = 4 and n = 5 the gamma matrices are 4 by 4, for n = 6 and n = 7 the
gamma matrices are 8 by 8, etc.. One concludes that the operators ψ̂i are realised as hermitian
operators in a Hilbert space of dimensions 2[n

2
].

(iii) Complex Grassmann variables ψ and ψ̄ (“single Dirac fermion in one dimension”).
Taking as phase space lagrangian

L = iψ̄ψ̇ −H(ψ, ψ̄) (59)

one finds {ψ, ψ̄}
PB

= −i as the only nontrivial Poisson bracket between the phase space co-

ordinates (ψ, ψ̄). It is quantized by the anticommutator {ψ̂, ψ̂†} = ~, producing a fermionic
annihilation/creation algebra. It is realized in a two dimensional Fock space, as anticipated
earlier while discussing the fermionic harmonic oscillator. This model is equivalent to that with
two real (Majorana) fermions, seen as the real and the imaginary part of the Dirac fermion.
Also, one may straightforwardly consider the theory of a set of several Dirac fermions in one
dimension.

These basic examples can be used to construct explicitly the irreducible representations
of the gamma matrices in arbitrary dimensions, and check their dimensionality as anticipated
above. One proceeds as follows. In even dimensions n = 2m one combines the 2m Majorana
worldline fermions, corresponding to the gamma matrices, into m pairs of worldline Dirac
fermions, that generate a set of m copies of independent, anticommuting creation/annihilation
operators. The latter act on the tensor products of m two-dimensional fermionic Fock spaces,
each one realizing an independent set of fermionic creation/annihilation operators. This gives
a total Hilbert space of 2m dimensions: indeed for each set of creation/annihilation operators a
state can only be empty or filled with the corresponding fermionic excitation. This is in accord
with the assertion given above about the dimensionality of the gamma matrices. Adding an
extra Majorana fermion corresponds to a Clifford algebra in odd dimensions (i.e. 2m + 1
dimensions): the related dimension of the Hilbert space does not change as the last Majorana
fermion can be realized as proportional to the chirality matrix of the 2m dimensional case,
which always exists.

2.1 Coherent states

It is useful to introduce coherent states, an overcomplete basis of vectors for the fermionic Fock
space described previously, for deriving a path integral for fermionic systems. They provide ket
eigenstates of the fermionic operator ψ̂ with Grassmann valued eigenvalues. Together with a
suitable resolution of the identity, they allow to convert the matrix elements of the quantum
evolution operator (transition amplitudes) into a path integral where one sums over Grassmann
valued functions. We first review the construction of bosonic coherent states, used in the theory
of the harmonic oscillator, to have a guide on the construction for the fermionic case.

In the theory of the harmonic oscillator one introduces coherent states defined as eigenstates
of the annihilation operator â. Let us recall the algebra of the creation and annihilation
operators â† and â

[â, â†] = 1 , [â, â] = 0 , [â†, â†] = 0 . (60)

It is realized by operators acting on an infinite dimensional Hilbert space, identified with a Fock
space which is constructed as follows. A complete orthonormal basis is obtained by starting
from the Fock vacuum |0〉, defined by the condition â|0〉 = 0. The other states of the basis
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are obtained by acting with the creation operator â† an arbitrary number of times on the Fock
vacuum |0〉

|0〉 such that â|0〉 = 0

|1〉 = â†|0〉

|2〉 =
â†√

2
|1〉 =

(â†)2

√
2!
|0〉

|3〉 =
â†√

3
|2〉 =

(â†)3

√
3!
|0〉

...

|n〉 =
â†√
n
|n− 1〉 =

(â†)n√
n!
|0〉

... (61)

Normalizing the Fock vacuum to unit norm, 〈0|0〉 = 1, where 〈0| = |0〉†, one finds that these
states are orthonomal

〈m|n〉 = δmn m,n = 0, 1, 2, ... . (62)

Now, choosing a complex number a, one builds the coherent states |a〉 defined by

|a〉 = eaâ
†|0〉 . (63)

They are eigenstates of the annihilation operator â

â|a〉 = a|a〉 . (64)

A way of proving this is by expanding the exponential and viewing |a〉 as an infinite sum with
suitable coefficients of the basis vectors of the Fock space

|a〉 = eaâ
†|0〉

=
(

1 + aâ† +
1

2!
(aâ†)2 +

1

3!
(aâ†)3 + · · ·+ 1

n!
(aâ†)n + · · ·

)
|0〉

= |0〉+ a|1〉+
a2

√
2!
|2〉+

a3

√
3!
|3〉+ · · ·+ an√

n!
|n〉+ · · · . (65)

In this form it is easy to calculate (using â|n〉 =
√
n|n− 1〉)

â|a〉 = â
(
|0〉+ a|1〉+

a2

√
2!
|2〉+

a3

√
3!
|3〉+ · · ·+ an√

n!
|n〉+ · · ·

)
= 0 + a|0〉+ a2|1〉+

a3

√
2!
|2〉+ · · ·+ an√

(n− 1)!
|n− 1〉+ · · ·

= a
(
|0〉+ a|1〉+

a2

√
2!
|2〉+ · · ·+ an−1√

(n− 1)!
|n− 1〉+ · · ·

)
= a|a〉 . (66)

A faster way of proving the same result is to recognize that the algebra (60) can be realized by

â† → ā , â → ∂

∂ā
(67)
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acting on functions of ā ∈ C, and the result follows straighfowardly2.
A list of properties that can be proven with similar calculations are

(i) 〈ā| = |a〉† = 〈0|eāâ =⇒ 〈ā|â† = 〈ā|ā
(ii) 〈ā|a〉 = eāa (scalar product)

(iii) 1 =

∫
dāda

2πi
e−āa |a〉〈ā| (resolution of the identity)

(iv) Tr Â =

∫
dāda

2πi
e−āa 〈ā|Â|a〉 (trace of the operator Â) . (68)

One should note that the set of coherent states form an over-complete basis, in particular
they are not orthonormal, in fact 〈b̄|a〉 = eb̄a 6= 0. However, it is useful to keep this redundancy.
Coherent states may be used to rederive a form of the path integral in phase space in terms of
the so-called holomorphic trajectories, corresponding to paths for the a and ā complex variables.
We will not present it here, but consider only the corresponding fermionic construction which
is, mutatis mutandis, analogous.

A similar definition of coherent states can be introduced for fermionic systems. As we have
seen the algebra of the anticommutators of the fermionic creation/annihilation operators ψ̂†

and ψ̂

{ψ̂, ψ̂†} = 1 , {ψ̂, ψ̂} = 0 , {ψ̂†, ψ̂†} = 0 (69)

can be realized by 2× 2 matrices acting in the two-dimensional fermionic Fock space generated
by the vectors |0〉 and |1〉, defined by

ψ̂|0〉 = 0 , |1〉 = ψ̂†|0〉 . (70)

One defines fermionic coherent states as eigenstates |ψ〉 of the annihilation operator ψ̂,
having the complex Grassmann number ψ as eigenvalue

ψ̂|ψ〉 = ψ|ψ〉 . (71)

The Grassmann numbers, such as ψ and its complex conjugate ψ̄, anticommute between them-
selves, and we define them to anticommute also with the fermionic operators ψ̂† and ψ̂. No
confusion should arise between the operators ψ̂ and ψ̂† that have a hat, and the complex
Grassmann variables ψ and ψ̄, eigenvalues of the eigenstates |ψ〉 and 〈ψ̄| respectively, that
carry no hat (similarly, in the previous chapter, we indicated position operator, eigenstates and
eigenvalues so that x̂|x〉 = x|x〉).

One can prove the following statements

(i) |ψ〉 = eψ̂
†ψ|0〉

(ii) 〈ψ̄| = 〈0|eψ̄ψ̂ =⇒ 〈ψ̄|ψ̂† = 〈ψ̄|ψ̄

(iii) 〈ψ̄|ψ〉 = eψ̄ψ

(iv) 1 =

∫
dψ̄dψ e−ψ̄ψ |ψ〉〈ψ̄|

(v) Tr Â =

∫
dψ̄dψ e−ψ̄ψ 〈−ψ̄|Â|ψ〉

(vi) Str Â ≡ Tr[(−1)F̂ Â] =

∫
dψ̄dψ e−ψ̄ψ 〈ψ̄|Â|ψ〉 (72)

2 One can represent |a〉 by |a〉 = eaā and compute â|a〉 = ∂
∂āe

aā = aeaā = a|a〉.
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where Â is an arbitrary bosonic operator.
The proofs can be obtained by explicit calculation. Let us proceed systematically.
(i) One expands the exponential and write the coherent state as

|ψ〉 = eψ̂
†ψ|0〉

= (1 + ψ̂†ψ)|0〉 = |0〉 − ψψ̂†|0〉
= |0〉 − ψ|1〉 (73)

and computes

ψ̂|ψ〉 = ψ̂eψ̂
†ψ|0〉

= ψ̂
(
|0〉 − ψ|1〉

)
= −ψ̂ψ|1〉 = ψψ̂|1〉 = ψ|0〉 = ψ

(
|0〉 − ψ|1〉

)
= ψ|ψ〉 (74)

which proves that |ψ〉 is a coherent state. Note that terms proportional to ψ2 can be inserted
or eliminated at wish, as they vanish due to Grassmann property ψ2 = 0.

(ii) “Bra” coherent state. To prove this relation for a bra coherent state it is sufficient
to take the hermitian conjugate of the ket coherent state |ψ〉. One must remember that the
definition of hermitian conjugate reduces to complex conjugation for Grassmann variables and
reverses the positions of both variables and operators. For example

(ψ̂†ψ)† = ψ̄ψ̂ . (75)

(iii) Scalar product. A direct computation (recalling that ψ2 = 0, ψ̄2 = 0 and ψψ̄ = −ψ̄ψ)
gives

〈ψ̄|ψ〉 =
(
〈0| − 〈1|ψ̄

)(
|0〉 − ψ|1〉

)
= 〈0|0〉+ ψ̄ψ〈1|1〉 = 1 + ψ̄ψ

= eψ̄ψ . (76)

We point out that the Grassmann variables are here defined to commute with the Fock vacuum
|0〉, so that they commute with the coherent states, but anticommute with |1〉 = ψ̂†|0〉 (as they
anticommute with ψ̂†).

(iv) Resolution of the identity. First of all one must recall that the definition of integration
over Grassmann variables makes it identical with differentiation. In particular we use left
differentiation, that removes the variable from the left (one must pay attention to signs arising
from this operation) ∫

dψ ≡ ∂
L

∂ψ
,

∫
dψ̄ ≡ ∂

L

∂ψ̄
. (77)

Now a direct calculation shows that∫
dψ̄dψ e−ψ̄ψ |ψ〉〈ψ̄| =

∫
dψ̄dψ (1− ψ̄ψ)

(
|0〉 − ψ|1〉

)(
〈0| − 〈1|ψ̄

)
= |0〉〈0|+ |1〉〈1| . (78)
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(v) Trace. Given a bosonic operator Â, that commutes with ψ and ψ̄, one can verify that∫
dψ̄dψ e−ψ̄ψ 〈−ψ̄|Â|ψ〉 =

∫
dψ̄dψ (1− ψ̄ψ)

(
〈0|+ 〈1|ψ̄

)
Â
(
|0〉 − ψ|1〉

)
=

∫
dψ̄dψ (1− ψ̄ψ)

(
〈0|Â|0〉 − ψ̄ψ〈1|Â|1〉+ · · ·

)
= 〈0|Â|0〉+ 〈1|Â|1〉
= Tr Â . (79)

(vi) Supertrace. An analogous calculation gives∫
dψ̄dψ e−ψ̄ψ 〈ψ̄|Â|ψ〉 =

∫
dψ̄dψ (1− ψ̄ψ)

(
〈0| − 〈1|ψ̄

)
Â
(
|0〉 − ψ|1〉

)
=

∫
dψ̄dψ (1− ψ̄ψ)

(
〈0|Â|0〉+ ψ̄ψ〈1|Â|1〉+ · · ·

)
= 〈0|Â|0〉 − 〈1|Â|1〉 = Tr[(−1)F̂ Â]

= Str Â . (80)

Here F̂ = ψ̂†ψ̂ is the fermion number operator (with eigenvalues F = 0 for |0〉 and F = 1 for
|1〉). The last line gives the definition of the supertrace.

Generalization to more fermionic degrees of freedom is straightofrward.

3 Fermionic path integrals

We now have all the tools to find a path integral representation of the transition amplitude
between coherent states 〈ψ̄f |e−iĤT |ψi〉, where we have set ~ = 1 for notational simplicity. We

consider an hamiltonian Ĥ = Ĥ(ψ̂†, ψ̂) written in such a way that all creation operators are
on the left of the annihilation operators, something that is always possible to achieve using the
fundamental anticommutation relations in (69). Note also that for a single pair of fermionic
creation/annihilation operators the most general (bosonic) hamiltonian takes the simple form
Ĥ = ωψ̂†ψ̂ + h0.

To turn the transition amplitude into a path integral, one divides the total propagation
time T into N steps of duration ε = T

N
, so that T = Nε. Using N − 1 times the decomposition

of the identity in terms of coherent states, one gets the following equalites

〈ψ̄f |e−iĤT |ψi〉 = 〈ψ̄f | e−iĤεe−iĤε · · · e−iĤε︸ ︷︷ ︸
N times

|ψi〉

= 〈ψ̄f |e−iĤε 1 e−iĤε 1 · · · 1 e−iĤε|ψi〉

=

∫ (N−1∏
k=1

dψ̄kdψk e
−ψ̄kψk

) N∏
k=1

〈ψ̄k|e−iĤε|ψk−1〉 (81)

where we have defined ψ0 ≡ ψi and ψ̄N ≡ ψ̄f . For ε→ 0 one can approximate the elementary
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transition amplitudes as

〈ψ̄k|e−iĤ(ψ̂†,ψ̂)ε|ψk−1〉 = 〈ψ̄k|
(

1− iĤ(ψ̂†, ψ̂)ε+ · · ·
)
|ψk−1〉

= 〈ψ̄k|ψk−1〉 − iε〈ψ̄k|Ĥ(ψ̂†, ψ̂)|ψk−1〉+ · · ·

=
(

1− iεH(ψ̄k, ψk−1) + · · ·
)
〈ψ̄k|ψk−1〉

= e−iεH(ψ̄k,ψk−1)eψ̄kψk−1 . (82)

The substitution Ĥ(ψ̂†, ψ̂)→ H(ψ̄k, ψk−1) follows from the ordering of the hamiltonian specified
previously (ψ̂† on the left and ψ̂ on the right). This allows one to act with the creation operator
on a bra eigenstate, and with the annihilation operator on a ket eigenstate, so that all operators
in the hamitonian gets substituted by the respective eigenvalues, producing a function of these
Grassmann numbers. This way the hamiltonian operator Ĥ(ψ̂†, ψ̂) gets substituted by the
hamiltonian function H(ψ̄k, ψk−1). These approximations are valid for N → ∞, i.e. ε → 0.
Substituting (82) in (81) one finds

〈ψ̄f |e−iĤT |ψi〉 = lim
N→∞

∫ (N−1∏
k=1

dψ̄kdψk e
−ψ̄kψk

)
ei

∑N
k=1[−iψ̄kψk−1−H(ψ̄k,ψk−1)ε]

= lim
N→∞

∫ (N−1∏
k=1

dψ̄kdψk

)
ei

∑N
k=1[iψ̄k

(ψk−ψk−1)

ε
−H(ψ̄k,ψk−1)]ε+ψ̄NψN

=

∫
Dψ̄Dψ ei

∫ T
0 dt[iψ̄ψ̇−H(ψ̄,ψ)]+ψ̄(T )ψ(T ) =

∫
Dψ̄Dψ eiS[ψ̄,ψ] . (83)

This is the path integral for one complex fermionic degree of freedom. We recognize in the
exponent a discretization of the classical action

S[ψ̄, ψ] =

∫ T

0

dt [iψ̄ψ̇ −H(ψ̄, ψ)]− iψ̄(T )ψ(T )

→
N∑
k=1

ε [iψ̄k
(ψk − ψk−1)

ε
−H(ψ̄k, ψk−1)]− iψ̄NψN (84)

where T = Nε is the total propagation time. The discrete values ψk and ψ̄k are those corre-
sponding to the values of the continuous functions evaluated at times t = kε, i.e. ψk = ψ(kε)
and ψ̄k = ψ̄(kε). The last way of writing the amplitude in (83) is symbolic and indicates the
formal sum over all paths ψ̄(t), ψ(t) such that ψ(0) = ψ0 ≡ ψi and ψ̄(T ) = ψ̄N ≡ ψ̄f , weighed
by the exponential of i times the classical action S[ψ̄, ψ]. Note that the action contains the
boundary term −iψ̄(T )ψ(T ), which is essential for formulating a variational principle where one
fixes the initial value of the function ψ(t) and the final value of the function ψ̄(t) as boundary
data (i.e. ψ(0) = ψi and ψ̄(T ) = ψ̄f ).

Trace

One can now produce a path integral expression for the trace of the transition amplitude
e−iĤT . Using the expression of the trace in the coherent state basis, and the path integral
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representation of the transition amplitude found previously, one finds

Tr[e−iĤT ] =

∫
dψ̄0dψ0 e

−ψ̄0ψ0 〈−ψ̄0|e−iĤT |ψ0〉

= lim
N→∞

∫ (N−1∏
k=0

dψ̄kdψk

)
ei

∑N
k=1[iψ̄k

(ψk−ψk−1)

ε
−H(ψ̄k,ψk−1)]ε

=

∫
A

Dψ̄Dψ eiS[ψ̄,ψ] (85)

where we have identified ψ̄N = −ψ̄0 and ψN = −ψ0, and used that the exponential e−ψ̄0ψ0 due
to taking the trace cancels the boundary term eψ̄NψN . Note that with this identification the
path integral measure can also be written as

∏N
k=1 dψ̄kdψk. In the continuum limit one finds a

sum on all antiperiodic paths i.e. such that ψ(T ) = −ψ(0) and ψ̄(T ) = −ψ̄(0) (A stands for
antiperiodic boundary conditions). This representation finds obvious applications in statistical
mechanical problems involving fermions.

Supertrace

Similarly, the supertrace is calculated by

Str[e−iĤT ] =

∫
dψ̄0dψ0 e

−ψ̄0ψ0 〈ψ̄0|e−iĤT |ψ0〉

= lim
N→∞

∫ (N−1∏
k=0

dψ̄kdψk

)
ei

∑N
k=1[iψ̄k

(ψk−ψk−1)

ε
−H(ψ̄k,ψk−1)]ε

=

∫
P

Dψ̄Dψ eiS[ψ̄,ψ] (86)

where we have now identified ψ̄N = ψ̄0 and ψN = ψ0. Again the term e−ψ̄0ψ0 due to taking
the supertrace cancels the boundary term eψ̄NψN . In the continuum limit the sum is over all
periodic trajectories defined by the boundary conditions ψ(T ) = ψ(0) and ψ̄(T ) = ψ̄(0) (P
stands for periodic boundary conditions).

We have derived the path integral for fermionic systems from the operatorial formulation
using a time slicing of the total propagation time. This produces a discretization of the classical
action and defines concretely the meaning of the path integral once written in the continuum
notation (i.e. it provides a regularization). We have discussed just a simple model with one
complex degree of freedom, ψ(t) and its complex conjugate ψ̄(t), that may be called a Dirac
fermion in one dimension. The extension to several complex degrees of freedom is immediate.

The case of Majorana fermions

A subtle situation arises if one imposes a reality condition on the fermionic variable ψ(t).
In a sense this is the minimal possible model for fermions. Since ψ̄(t) = ψ(t), one may call it
a Majorana fermion in one dimension, because of similar definitions for fermionic fields in four
dimensions. Its action takes the simple form

S[ψ] =

∫
dt
i

2
ψψ̇ . (87)

It is formally real and non vanishing because of the Grassmann character of the variable, but
there exists no nontrivial, local and even term that can be written down as hamiltonian. Also,
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local boundary terms cannot be introduced, as the obvious one would vanish for a single an-
ticommuting variable. Non local boundary terms, consistent with the necessity of imposing
boundary conditions equal in number to the number of degrees of freedom (one in our case),
are however possible. As already mentioned, canonical quantization gives rise to the anticom-
mutation relation

{ψ̂, ψ̂} = 1 (88)

which may be realized as multiplication by a number, ψ̂ = 1√
2
, acting on a one dimensional

Hlibert space. There is no room for any dynamics and the model is empty.
For a number n > 1 of Majorana fermions ψi, i = 1, ..., n, one can write down an action

containing a nontrivial hamiltonian

S[ψi] =

∫
dt

(
i

2
ψiψ̇i −H(ψi)

)
. (89)

Its canonical quantization gives rise to the algebra

{ψ̂i, ψ̂j} = δij . (90)

For an even number of Majorana fermions, say n = 2m, one can realize it by pairing together the
Majorana fermions to obtain m complex Dirac fermions, rewrite the anticommutator algebra in
the new basis, and obtain a set of independent fermionic creation/annihilation operators acting
on a fermionic Fock space. Then one may proceed in constructing the path integral as described
previously. This procedure is sometimes called “fermion halving”, as one halves the number
of fermions at the price of making them complex. Local boundary terms in the action can be
introduced in this basis and are related to the external coherent states used in the derivation
of the path integral expression for the transition amplitude. However, this procedure may hide
symmetries manifest in the Majorana basis.

To avoid this last problem, one may instead add a second set of (free) Majorana fermions χi

to be able to make n complex combinations Ψi = 1√
2
(ψi + iχi), and with these Dirac fermions

proceed again as before in the construction of the path integral. The fermions χi are just free
spectators as the hamiltonian does not contain them. However, one must discuss carefully
how to fix the external boundary condition to describe the original physical degrees of freedom
only. On the circle (trace or supertrace) it is easy to fix this problem: one fixes appropriately
the overall normalization of the path integral to correspond to the correct dimensions of the
physical Hilbert space. Indeed the ψi have their Hilbert space of dimensions 2

n
2 , which differs

from the dimensions of the full unphysical Hilbert space of the Ψi that is 2n. In this sense
this procedure is sometimes called “fermion doubling”, as the number of Majorana fermions is
doubled.

Finally, if the number of Majorana fermions is odd, say n = 2m+ 1, one can treat the first
2m fermions in either one of the two ways, but for the last one one must necessarily use the
fermion doubling procedure. An important application of Majorana fermions is in worldline
descriptions of spin 1/2 particles in spacetimes of dimensions D > 1, and in particular in D = 4.
Another method of treating this case make use of more sophisticated procedures, and use the
symbol map qunatization, akin to the Weyl quantization scheme. It will not be described at this
point, but we use it later on in the treatement of the fermion propagator in D = 4 dimensions.

To summarize, we have discussed the path integral quantization of fermionic theories with
one-dimensional Majorana fermions ψi

S[ψ] =

∫
dt

(
i

2
ψiψ̇i −H(ψi)

)
→

∫
Dψ eiS[ψ] (91)
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and one-dimensional Dirac fermions ψi, ψ̄i

S[ψ, ψ̄] =

∫
dt
(
iψ̄iψ̇

i −H(ψi, ψ̄i)
)
→

∫
Dψ̄Dψ eiS[ψ,ψ̄] (92)

whose path integrals are concretely made sense of by using the time slicing discretization. Other
regularizations may be developed as well. They are useful for working directly in the continuum
limit and will be discussed in later chapters.

Finally, one can perform a Wick rotation to an euclidean time τ by t → −iτ , and derive
euclidean path integrals of the forms∫

Dψ e−SE [ψ] and

∫
Dψ̄Dψ e−SE [ψ,ψ̄] (93)

where now

SE[ψ] =

∫
dt

(
1

2
ψiψ̇i +H(ψi)

)
and SE[ψ, ψ̄] =

∫
dt
(
ψ̄iψ̇

i +H(ψi, ψ̄i)
)
. (94)

In this form they will be used in subsequent parts of the book.

3.1 Correlation functions

Correlation functions are defined as normalized averages of the dynamical variables. Again,
one may introduce a generating functional by adding sources to the path integral. Using an
hypercondensed notation, and denoting all fermionic functions by ψi and corresponding sources
by ηi (taking values in a Grassmann algebra), one may write down the generating functional
of correlation functions

Z[η] =

∫
Dψ eiS[ψ]+iηiψ

i

. (95)

As an example, the two point function is given by

〈ψiψj〉 =

∫
Dψ ψiψj eiS[ψ]∫
Dψ eiS[ψ]

=
1

Z[0]

(1

i

)2 δ2Z[η]

δηiδηj

∣∣∣∣
η=0

. (96)

In a free theory, identified by a quadratic action of the form S[ψ] = −1
2
ψiKijψ

j with Kij

an antisymmetric matrix, one may formally compute the path integral with sources by gaus-
sian integration (after completing squares and making use of the transitional invariance of the
measure), thus obtaining an answer of the form

Z[η] = det
1
2 (Kij) e

− i
2
ηiG

ijηj (97)

where Gij is the inverse of Kij, also an antisymmetric matrix. One finds

〈ψiψj〉 = −iGij (98)

where Gij is interpreted as a Green function in quantum mechanical applications. To check the
overall normalization one must be careful with signs arising from the anticommuting character
of the Grassmann variables and from the antisymmetric properties of Kij and Gij.
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Similar formulae may be written down for complex fermions (though they are contained in
the above formula as well) and in the euclidean time obtained after a Wick rotation. Let us
just write down as an example the essential formulae for last case

ZE[η, η̄] =

∫
Dψ̄Dψ e−SE [ψ,ψ̄]+η̄iψ

i+ψ̄iη
i

〈ψiψ̄j〉 = − 1

ZE

δ

δη̄i

δ

δηj
ZE[η, η̄]

∣∣∣∣
η=η̄=0

(99)

and for a free action

SE[ψ, ψ̄] = ψ̄iK
i
jψ

j

ZE[η, η̄] =

∫
Dψ̄Dψ e−SE [ψ]+η̄iψ

i+ψ̄iη
i

= det(Ki
j) e

η̄iG
i
jη
j

〈ψiψ̄j〉 = Gi
j (100)

where the second one has been computed by completing squares (using the inverse Gi
j of Ki

j).
Eventually one must take into account the chosen boundary conditions on the path integral,
and use the corresponding Green functions Gi

j. The whole set of generating functions described
already for the bosonic case may be introduced here as well. We leave their derivation as an
exercize for the reader.

4 Supersymmetric quantum mechanics

Very special quantum mechanical models containing bosons and fermions may exhibit the
property of supersymmetry, a particular symmetry that finds various applications in theoretical
physics. In quantum field theories supersymmetry relates particles with integer spins (bosons)
to particles with half-integer spins (fermions). It is used to find extensions of the standard
model of elementary particles that softens hierarchical problems related to the mass of the Higgs
boson. More generally, it helps improving the ultraviolet behavior of quantum field theories
and gravitational theories (supergravities). It is also a fundamental ingredient of string theory.

At the quantum mechanical level, supersymmetry appears in worldline models for particles
with spin. It finds beautiful applications in mathematical physics, as for example in producing
a simple and elegant proof of index theorems, that relate topological properties of differential
manifolds to local properties.

In the following section we present a class of quantum mechanical models, including the
supersymmetric harmonic oscillator, that exemplifies various aspects of supersymmetry in one
of its simplest contexts, that of quantum mechanics. After the introduction of the model,
we analyze and verify some important consequences of supersymmetry. Then, we identify its
classical action and use it in the path integral quantization to calculate a topological invariant
associated to families of supersymmetric theories, the so-called Witten index.

A cautionary note: once should observe that in the first quantized description of particles
two different spaces are present: (i) the worldline, that for pedagogical reasons may be con-
sidered as a 0+1 dimensional space-time, and (ii) the target 3+1 dimensional space-time, on
which the particle propagates and which is the embedding space of the worldline. One may
have supersymmetries on both spaces: (i) supersymmetry on the worldline, which is the case we
are going to analyze in detail, useful for describing spinning particles. The states called bosonic
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and fermionic are not related to the spin of the particle in target space (which is fixed), but
find a precise definition in the full Hilbert space. (ii) Supersymmetry in target space. Quan-
tum mechanical models carrying this symmetry are often called superparticles, and describe a
multiplet of particles containing bosons and fermions in equal numbers, where the bosons are
particle with integer spin and fermions particles with half-integer spin. Superparticles are not
discussed in this book.

N=2 supersymmetric model

We introduce here a class of supersymmetric models that describe the motion of a non-
relativistic particle of unit mass on the line R. The particle carries an intrinsic spin that gives
it two possible polarizations, and thus one may think of a non-relativistic electron moving on
a line. It is described by hermitian bosonic operators, the position x̂ and the momentum p̂,
satisfying the usual commutation relation

[x̂, p̂] = i (101)

augmented by fermionic annhilation/creation operators ψ̂ and ψ̂† that satisfy anticommutation
relations

{ψ̂, ψ̂†} = 1 . (102)

Other independent graded commutators vanish.
The dynamics is specified by an hamiltonian that depends on a function W (x), called the

prepotential, through its first and second derivatives W ′(x) and W ′′(x)

Ĥ =
1

2
p̂2 +

1

2

(
W ′(x̂)

)2

+
1

2
W ′′(x̂)(ψ̂†ψ̂ − ψ̂ψ̂†) . (103)

In addition the model has conserved charges

Q̂ = (p̂+ iW ′(x̂))ψ̂

Q̂† = (p̂− iW ′(x̂))ψ̂†

F̂ = ψ̂†ψ̂ (104)

that indeed commute with the hamiltonian, as may be verified by an explicit calculation

[Q̂, Ĥ] = [Q̂†, Ĥ] = [F̂ , Ĥ] = 0 . (105)

The charges Q̂ and Q̂† are the supercharges that generate supersymmetry transformations.
They are fermionic operators. There are two of them, Q̂ and Q̂†, or equivalently the real and
the imaginary part of Q̂. This means that there are two supersymmetries, thus the name N = 2
supersymmetry. The hamiltonian may look complicated, but in supersymmetric models it is
related to the anticommutator of the supercharges, which are more basic objects. In the present
case one has

{Q̂, Q̂†} = 2Ĥ , {Q̂, Q̂} = {Q̂†, Q̂†} = 0 , [Ĥ, Q̂] = 0 . (106)

These relations contain the hallmark of supersymmetry: the hamiltonian, which is the generator
of time translations, is related to the anticommutator of the supersymmetry charges, i.e. a time
translation is obtained by the composition of two supersymmetry transformations.
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In the present case there is also a conserved fermion number operator F̂ , that is seen to
satisfy

[Q̂, F̂ ] = Q̂ , [Q̂†, F̂ ] = −Q̂† . (107)

To summarize, the N = 2 supersymmetric model is characterized by a N = 2 supersym-
metry algebra, a superalgebra with bosonic (Ĥ, F̂ ) and fermionic (Q̂, Q̂†) charges with the
following non vanishing independent graded commutation relations

{Q̂, Q̂†} = 2Ĥ , [Q̂, F̂ ] = Q̂ , [Q̂†, F̂ ] = −Q̂† . (108)

The operators of the model are realized explicitly in a Hilbert space constructed as follows.
The operators x̂ and p̂ are realized in the usual way on the Hilbert space of square integrable
functions L2(R) by multiplication x̂ → x and differentiation p̂ → −i ∂

∂x
. As for the fermionic

operators ψ̂ e ψ̂†, their algebra identifies them as fermionic annihilation/creation operators
realized on a two dimensional Fock space F2, with basis |0〉 and |1〉, defined by

ψ̂|0〉 = 0, 〈0|0〉 = 1 (Fock vacuum)

|1〉 = ψ̂†|0〉 (state with one fermionic exitation) (109)

as described earlier. We recall that one cannot add additional excitations, as the creation
operator satisfies {ψ†, ψ†} = 0, i.e. (ψ†)2 = 0, so that |2〉 = ψ̂†|1〉 = (ψ̂†)2|0〉 = 0. Thus, one
has a Pauli exclusion principle. The two states obtained, with |0〉 considered bosonic and |1〉
considered fermionic, may be interpreted as describing the two possibile polarizations of the
particle mentioned above.

The full Hilbert space is the direct product of the two Hilbert spaces described above, that
is H = L2(R) ⊗ F2 = L2(R) ⊕ L2(R), and one may realize the states by wave functions with
two components

Ψ(x) =

(
ϕ1(x)
ϕ2(x)

)
(110)

on which the basic operators act as follows

x̂ −→ x

p̂ −→ −i ∂
∂x

ψ̂ −→
(

0 1
0 0

)
ψ̂† −→

(
0 0
1 0

)
. (111)

Then, one finds the following explicit realization of the conserved charges

Q̂ =

(
0 −i∂x + iW ′(x)
0 0

)
Q̂† =

(
0 0

−i∂x − iW ′(x) 0

)
Ĥ =

(
H− 0
0 H+

)
=

(
−1

2
∂2
x + 1

2
(W ′(x))2 − 1

2
W ′′(x) 0

0 −1
2
∂2
x + 1

2
(W ′(x))2 + 1

2
W ′′(x)

)
F̂ =

(
0 0
0 1

)
. (112)
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The hamiltonian is diagonal in the Fock space basis, and contains the two hamiltonians H∓
with potentials V∓ = 1

2
(W ′(x))2∓ 1

2
W ′′(x) . We assume them to have a suitable asymptotic be-

havior that confines the particle, so that the energy eigenstates are bound and have normalized
wave functions.

Having defined F̂ as the fermion number, we see that the states of the form

Ψb(x) =

(
ϕ1(x)

0

)
are bosonic as they have fermion number F = 0, while states of the form

Ψf (x) =

(
0

ϕ2(x)

)
are fermionic as they have fermion number F = 1. These are consistent worldline assignments
of the adjectives bosonic and fermionic. Note that there is no concept of rotations, and thus of
spin, on the 0+1 dimensional spacetime given by the worldline: the 0-dimensional space is just
a point. From the target space perspective there is no supersymmetry: the model is describing
a non relativistic particle of unit mass that moves on a line and has two possible polarizations
of its intrinsic spin. The explicit representation of the various operators can be used to verify
again the supersymmetric algebra.

The Schrödinger equation takes the standard form

i
∂

∂t
Ψ = ĤΨ (113)

and one may solve it to study the model. However many properties can be deduced without
finding the explicit solution by using the symmetries .

In the following we analyze some general properties of the energy eigenstates that follows
from suspersymmetry, and then verify those properties directly in our model.

General properties of supersymmetry

Let us discuss general properties of supersymmetry that follows form its algebraic structure.
We assume that the supersymmetric model has an hamiltonian Ĥ, one hermitian supersymme-
try charge Q̂, and the parity operator (−1)F̂ satisfying the following algebra

{Q̂, Q̂} = 2Ĥ, {(−1)F̂ , Q̂} = 0, [(−1)F̂ , Ĥ] = 0 . (114)

This algebra is general enough to derive properties of supersymmetric systems in any dimension.
Our explicit quantum mechanical model has a N = 2 susy algebra with hamiltonian Ĥ, two

supersymmetry charges Q̂ and Q̂†, and fermion number operator F̂ . It certainly satisfies the
requirements stated above. One may equivalently use any one of its two hermitian supercharges
Q̂1 and Q̂2, defined by setting Q = 1√

2
(Q̂1 +iQ̂2). We satisy the above requirements by choosing

for example Q1. Also, one may exponentiate the fermion number operator to obtain the unitary
operator eiαF̂ that performs phase rotations belonging to the group U(1). For α = π one has

the parity operator (−1)F̂ needed to meet the above requirements. In the representation of eq.
(33) one finds

eiαF̂ =

(
1 0
0 eiα

)
, (−1)F̂ =

(
1 0
0 −1

)
. (115)
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We also assume a discrete energy spectrum to guarantee that the energy eigenstes are normal-
izable, and of course the existence of an Hilbert space H with a positive definite inner product.
One can prove the following properties:

Property 1: The hamiltonian Ĥ is positive definite.

It means that for any vector |Ψ〉 of the Hilbert space H

〈Ψ|Ĥ|Ψ〉 ≥ 0 . (116)

In fact, using Ĥ = 1
2
{Q̂, Q̂} = Q̂2 with a hermitian Q̂ one calculates

〈Ψ|Ĥ|Ψ〉 = 〈Ψ|Q̂Q̂|Ψ〉 = |Q̂|Ψ〉|2 ≥ 0 (117)

as the norm is positive definite on the Hilbert space. In particular, one deduces that any energy
eigenstate with energy E must have E ≥ 0.

Proprerty 2: Any state |Ψ0〉 with E = 0 is necessarily a ground state and supersymmetric.

Indeed, from the previous calculation one finds that the value E = 0 is the lowest energy
admissible, so that if a state with such an energy exists, it must be a ground state. In addition,
from 〈Ψ0|Ĥ|Ψ0〉 = 0, and using eq. (117), one finds that

Q̂|Ψ0〉 = 0 (118)

as the Hilbert space has a positive definite norm, and the only zero norm state is the null vector.
Thus |Ψ0〉 is a supersymmetric state, a state invariant under supersymmetry transformations
generated by Q̂.

Property 3: Energy levels with E 6= 0 are degenerate.

This is proved by showing that for any “bosonic” state ((−1)F = 1) with E 6= 0 there must
exists a “fermionic” state ((−1)F = −1) with the same energy, and viceversa. Let us consider
a bosonic state |b〉 (assumed to be normalizable) with energy E 6= 0

Ĥ|b〉 = E|b〉 , E 6= 0 , 〈b|b〉 = ||b〉|2 = 1

(−1)F̂ |b〉 = |b〉 . (119)

Then one can construct
|f ′〉 = Q̂|b〉 (120)

and show that this is an energy eigenstate of opposite fermionic number

Ĥ|f ′〉 = E|f ′〉 , (−1)F̂ |f ′〉 = −|f ′〉 . (121)

Indeed, using [Ĥ, Q̂] = 0 one finds

Ĥ|f ′〉 = ĤQ̂|b〉 = Q̂Ĥ|b〉 = Q̂E|b〉 = E|f ′〉 (122)

and similarly, using {(−1)F̂ , Q̂} = 0, one finds

(−1)F̂ |f ′〉 = (−1)F̂ Q̂|b〉 = −Q̂(−1)F̂ |b〉 = −Q̂|b〉 = −|f ′〉 . (123)
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The state is properly normalized by |f〉 = 1√
E
|f ′〉, which is well-defined since E 6= 0, so that

〈f |f〉 = 1. Thus, the states |b〉 and |f〉 are degenerate in energy and have opposite fermionic
parity: they form a two-dimensional representation of the supersymmetry algebra.

The same procedure can be repeated starting from a fermionic eigenstes with E 6= 0 to
construct the bosonic energy eigenstate partner. One deduces that all energy levels with E 6= 0
are degenerate and with an equal number of bosonic and fermionic states, while states with
E = 0 are supersymmetric (singlets under supersymmetry) and, if they exists, are possible
ground states of the model.

The Witten index Tr(−1)F̂

It is useful to define the Witten index as the number of bosonic minus the number of
fermionic ground states of vanishing energy

n
(E=0)
b − n(E=0)

f = Tr(E=0)(−1)F̂ (124)

here written also as the trace of (−1)F̂ on the subspace of the Hilbert space formed by the
states with E = 0.

Typically, one rewrite this as Tr(−1)F̂ , with the trace extended over the full Hilbert space,
as positive energy states cancels pairwise in the sum and do not contribute

Tr(−1)F̂ = n
(E=0)
b − n(E=0)

f . (125)

However, this rewriting is formal as the infinite sum does not converge absolutely. To make
sure that the cancellation of positive energy states is achieved orderly, one should regulate the
Witten index, as for example by defining it as

Tr[(−1)F e−βĤ ] (126)

that is found to be independent of the regulating parameter β: indeed, using the complete basis
of energy eigenstates one calculates

Tr[(−1)F̂ e−βĤ ] =
∑
k

〈k|(−1)F̂ e−βEk |k〉

= n
(E=0)
b − n(E=0)

f + e−βE1 − e−βE1 + e−βE2 − e−βE2 + . . .

= n
(E=0)
b − n(E=0)

f . (127)

The limit β → 0 defines Tr(−1)F̂ properly, though the limit is not really necessary, as the sum
is independent of β.

The Witten index has topological properties in the sense that it is invariant under reasonable
deformations of the parameters of the theory (e.g. one may vary the coupling constants without
modifying the asymptotic behavior of the potential): in fact a single state cannot leave the
sector E = 0 as it must have a partner to form a doublet degenerate in energy. Only pairs
of states can leave the zero energy level by acquiring a small value of the energy, so that they
can form a supersymmetry doublet containing one bosonic and one fermionic state. Viceversa,
states with E 6= 0 are paired and the pair contains one boson and one fermion: if by varying
the parameters of the theory they acquire the exact value E = 0 they do not modify the value
of the Witten index.
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Calculation of the Witten index

Let us calculate the Witten index in the class of models with N = 2 supersymmetries
presented above. Vacuum states |Ψ0〉 with E = 0 satisfy Ĥ|Ψ0〉 = 0 so that

〈Ψ0|Ĥ|Ψ0〉 =
1

2
〈Ψ0|(Q̂Q̂† + Q̂†Q̂)|Ψ0〉 =

1

2
|Q̂†|Ψ0〉|2 +

1

2
|Q̂|Ψ0〉|2 = 0 (128)

and they must be supersymmetric

Q̂|Ψ0〉 = 0 , Q̂†|Ψ0〉 = 0 . (129)

Let us solve these equations. Setting

Ψ0(x) =

(
f1(x)
f2(x)

)
we translate the equation Q̂|Ψ0〉 = 0 as

Q̂Ψ0(x) =
(

(p̂+ iW ′(x̂))ψ̂
)

Ψ0(x) =

(
0 −i∂x + iW ′(x)
0 0

)(
f1(x)
f2(x)

)
=

(
−i∂xf2(x) + iW ′(x)f2(x)

0

)
=

(
0
0

)
(130)

which is solved by the function
f2(x) = c2e

W (x) (131)

with c2 a constant, while f1(x) remains arbitrary. Similarly the equation Q̂†|Ψ0〉 = 0 takes the
form

Q̂†Ψ0(x) =
(

(p̂− iW ′(x̂))ψ̂†
)

Ψ0(x) =

(
0 0

−i∂x − iW ′(x) 0

)(
f1(x)
f2(x)

)
=

(
0

−i∂xf1(x)− iW ′(x)f1(x)

)
=

(
0
0

)
(132)

which is solved by
f1(x) = c1e

−W (x) (133)

with c1 a constant, while f2(x) remains arbitrary.
The combined equations are then solved by

Ψ0(x) =

(
c1e
−W (x)

c2e
+W (x)

)
. (134)

Requiring the wave functions to be normalizable fixes the constants c1 and c2. There are
essentially three different cases to consider:

1. Case W (x)
x→±∞−→ ∞

In such a situation the wave function (134) must have c2 = 0 to be normalizable. Thus there
is only one ground state of vanishing energy. It is a boson, as its fermionic number vanishes

F̂Ψ0(x) =

(
0 0
0 1

)(
c1e
−W (x)

0

)
= 0 (135)
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and thus (−1)F = 1. The Witten index is calculated to be Tr(−1)F̂ = 1.

2. Case W (x)
x→±∞−→ −∞

Now eq. (134) must have c1 = 0 to be normalizable. There is again only one ground
state of vanishing energy, and is fermionic. Indeed it has fermion number F = 1 and parity
(−1)F = −1, so that the Witten index is Tr(−1)F̂ = −1.

3. Case W (x)
x→±∞−→ ±∞ or W (x)

x→±∞−→ ∓∞
In this case c1 = c2 = 0, so that there are no normalizables solutions with E = 0. The

Witten index vanishes, Tr(−1)F̂ = 0.

Let us also make a brief comment. If there are no states with E = 0 one says that su-
persymmetry is spontaneously broken: the ground state is not invariant under supersymmetry
transformations. This happens in the third case above. The consequences of spontaneous break-
ing of supersymmetry are particularly dramatic in quantum field theories, where a fermionic
massless excitation called goldstino appears. In general, a vanishing value of the Witten in-
dex does not allow to reach any conclusion, as there might exist several ground states with
E = 0, half of them bosonic and half of them fermionic, that balance each other to produce a
vanishing Witten index. On the other hand, if the Witten index is different form zero supersym-
metry certainly cannot be spontaneously broken: there always exists at least one ground state
with E = 0, which is necessarily invariant under supersymmetry. The concept of spontaneous
breaking of symmetries is of fundamental importance in QFT applications.

We may verify the topological properties of the Witten index in the previous model: one
may modify at will the prepotential W (x) without altering its asymptotic behavior, but these

deformations do not modify the value of Tr(−1)F̂ as the ground states are only fixed by the
asymptotics of W (x).

Classical action

One needs the classical action to be able to study the quantum model through path integrals.
The action makes use of Grassmann variables for treating the worldline fermions at the classical
level. Classical models are useful to identify and construct quantum models. In our case we
have started directly with the quantum theory. Now we present its classical action, show that
it is supersymmetric, and that its canonical quantization gives rise precisely to the previous
quantum theory.

The action is given by

S[x, ψ, ψ̄] =

∫
dt

[
1

2
ẋ2 − 1

2

(
W ′(x)

)2

+ iψ̄ψ̇ −W ′′(x)ψ̄ψ

]
(136)

where x(t) is the coordinate of the particles in one dimension, while ψ(t) and its complex
conjugate ψ̄(t) are Grassmann variables that describe additional degrees of freedom3. When
the prepotential W (x) satisfies suitable asymptotic conditions it guarantees that the energy
eigenstates are bound states at the quantum level, and thus normalizable. In particular, the
choice W (x) = 1

2
ωx2 identifies the so-called supersymmetric harmonic oscillator.

3Alternatively, one may use the real Grassmann variables ψ1 and ψ2, proportional to the real and imaginary
part of ψ as defined by setting ψ = (ψ1 + iψ2)/

√
2.
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The equations of motion are easily obtained by extremizing the action

δS

δx(t)
= 0 ⇒ ẍ+W ′(x)W ′′(x) +W ′′′(x)ψ̄ψ = 0

δS

δψ̄(t)
= 0 ⇒ iψ̇ −W ′′(x)ψ = 0

δS

δψ(t)
= 0 ⇒ i ˙̄ψ +W ′′(x)ψ̄ = 0 . (137)

Let us now analyse the symmetries. A first obvious symmetry is the one related to the time
translational invariance, induced by t → t′ = t − a. This arises as the lagrangian depends on
time only implicitly through the dynamical variables. Infinitesimally, this symmetry acts on
the dynamical variables as

δ
T
x = aẋ

δ
T
ψ = aψ̇

δ
T
ψ̄ = a ˙̄ψ (138)

and implies conservation of the energy H.
There are also U(1) phase transformations of the complex Grassman variables that leave

the action invariant: using an infinitesimal parameter α they read

δ
F
x = 0

δ
F
ψ = iαψ

δ
F
ψ̄ = −iαψ̄ (139)

and imply conservation of the fermion number F .
Finally, the action is invariant under infinitesimal supersymmetry transformations (with ε

and ε̄ Grassmann constants) given by

δ
S
x = iεψ̄ + iε̄ψ

δ
S
ψ = −ε(ẋ− iW ′(x))

δ
S
ψ̄ = −ε̄(ẋ+ iW ′(x)) (140)

which gives rise to conserved charges Q and Q̄ called supercharges. This is the most laborious
symmetry to verify.

An application of the Noether’s theorem gives the following explicit expressions for the
conserved charges

H =
1

2
ẋ2 +

1

2

(
W ′(x)

)2

+W ′′(x)ψ̄ψ

F = ψ̄ψ

Q = (ẋ+ iW ′(x))ψ

Q̄ = (ẋ− iW ′(x))ψ̄ . (141)

One may verify that the commutator of two supersymmetry transformations generates a
time translation. Calculating it onto the dynamical variable x one obtains

[δ
S
(ε1), δS(ε2)]x = −aẋ = δ

T
(a)x (142)
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with a = 2i(ε̄1ε2− ε̄2ε1). This is the characterizing property of supersymmetry: the composition
of two supersymmetries generate a time translation. The same property can be verified on the
variables ψ and ψ̄ (in this case on the right hand side there appears also terms proportional to
the equations of motion, which however vanish on the physical paths).

Hamiltonian formalism

To perform canonical quantization we have to reformulate the model in phase space. The
conjugate momentum to the variable x is obtained as usual by

p =
∂L

∂ẋ
= ẋ (143)

As for the Grassmann variables, they have equations of motions that are first order in time, so
that they are already in a hamiltonian form. The momentum conjugate to ψ is proportional
to ψ̄ as

π =
∂
L
L

∂ψ̇
= −iψ̄ (144)

where ∂
L

denotes left differentiation (one commutes the variable to the left and then removes
it). The corresponding hamiltonian is given by the Legendre transform of the lagrangian

H = ẋp+ ψ̇π − L

=
1

2
p2 +

1

2

(
W ′(x)

)2

+W ′′(x)ψ̄ψ (145)

and coincides with the energy calculated in (141) once written in terms of the phase space
variables. The phase space action is given by

S[x, p, ψ, ψ̄] =

∫
dt L =

∫
dt (pẋ+ iψ̄ψ̇ −H) . (146)

From the previous discussion on the hamiltonian formalism, one knows how to construct the
Poisson brackets. Up to boundary terms, the action can be rewritten so to expose the matrices
of the symplectic term

S[x, p, ψ, ψ̄] =

∫
dt

[
1

2
(x, p)

(
0 1
−1 0

)(
ẋ
ṗ

)
+

1

2
(ψ, ψ̄)

(
0 i
i 0

)(
ψ̇
˙̄ψ

)
−H

]
(147)

and one finds that the Poisson bracket for arbitrary phase space functions A and B is given by

{A,B}
PB

=
∂A

∂x

∂B

∂p
− ∂A

∂p

∂B

∂x
− i∂RA

∂ψ

∂
L
B

∂ψ̄
− i∂RA

∂ψ̄

∂
L
B

∂ψ
. (148)

It satisfies the properties listed in eq. (49) when the functions A and B have definite Grass-
mann parity. In particular, the independent and non vanishing Poisson brackets between the
fundamental variables are given by

{x, p}
PB

= 1 , {ψ, ψ̄}
PB

= −i (149)

which are antisymmetric for commuting variables and symmetric for anticommuting ones.

28



The Noether charges calculated previously can be written as functions on phase space as

H =
1

2
p2 +

1

2

(
W ′(x)

)2

+W ′′(x)ψ̄ψ

F = ψ̄ψ

Q = (p+ iW ′(x))ψ

Q̄ = (p− iW ′(x))ψ̄ (150)

and satisfy a Poisson bracket algebra whose non vanishing terms are given by

{Q, Q̄}
PB

= −2iH , {F,Q}
PB

= iQ , {F, Q̄}
PB

= −iQ̄ . (151)

The first relation shows that the composition of two supersymmetries generates a translation
in time. This is the classical N = 2 susy algebra.

Canonical quantization is now straightforward, and one recognizes the same quantum theory
discussed earlier. In particular, the quantum N = 2 susy algebra (106) is reproduced. One
may notice that an ordering ambiguity emerging in defining the quantum Hamiltonian (the last
term proportional to ψ̄ψ) is fixed precisely in order to mantain the susy algebra at the quantum
level.

Path integrals and Witten index

One can now give a path integral representation of the Witten index. The regulated form of the
index Tr[(−1)F̂ e−βĤ ] can be obtained by a Wick rotation T → −iβ of the transition amplitude

e−iĤT . The corresponding path integral has an euclidean action SE, obtained from (136) by
Wick rotation (iS[x, ψ, ψ̄]→ −SE[x, ψ, ψ̄])

SE[x, ψ, ψ̄] =

∫ β

0

dτ

[
1

2
ẋ2 +

1

2

(
W ′(x)

)2

+ ψ̄ψ̇ +W ′′(x)ψ̄ψ

]
. (152)

Also, one must recall that a trace in the Hilbert space is calculated by a path integral with pe-
riodic boundary conditions (P ) for the bosonic variables, and antiperiodic boundary conditions
(A) for the fermionic ones

Tr e−βĤ =

∫
P

Dx

∫
A

DψDψ̄ e−SE [x,ψ,ψ̄] . (153)

The insertion of the operator (−1)F̂ creates instead a supertrace, and has the effect of changing
the boundary conditions on the fermions from antiperiodic to periodic

Tr [(−1)F̂ e−βĤ ] =

∫
P

DxDψDψ̄ e−SE [x,ψ,ψ̄] . (154)

Later on we sketch the calculation of the Witten index using this path integral representa-
tion. The calculation is simplified by using the fact that the Witten index is invariant under
continuous deformations of the parameters of the theory, that can be used to our advantage.
One can deform the prepotential as

W (x)→ λW (x) (155)
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with positive λ, and then take the limit λ → ∞. The final result must be independent of λ,
and indeed one finds that the index is computed by

Tr [(−1)F̂ e−βĤ ] =
∑
{x0}

W ′′(x0)

|W ′′(x0)|
(156)

where the sum is over all critical points {x0}, defined as the points of local maxima and minima
that satisfy W ′(x0) = 0. This result exemplify how the index connects topological properties
to local properties (the critical points).

It is easy to see that this result coincides with the one obtained earlier from the explicit
analysis of the ground states with E = 0: for case 1 there is always one more minimum than
maxima, so that Tr (−1)F̂ = 1, for case 2 there is always one more maximum than minima, so

that Tr (−1)F̂ = −1, for case 3 the number of maxima and minima concide and Tr (−1)F̂ = 0.
A direct identification of the ground states with E = 0 may be difficult to carry out in more

complicated models, and the path integral representation gives an easier tool to compute the
Witten index.

Sketch of the calculation

One must sum over all periodic trajectories, i.e. trajectories that close on themselves after an
euclidean time β. We indicate such trajectories by [x(τ), ψ(τ), ψ̄(τ)]. The leading contribution
to the path integral for λ → ∞ is associated to the constant trajectories [x0, 0, 0], where
the constants x0 are the critical points of the prepotential W (x), defined by the equation
W ′(x0) = 0. They solve the equations of motion, are obviously periodic, and make the potential
terms vanish also in the limit λ → 0. Thus, the leading classical approximation to the path
integral is given by

Tr [(−1)F̂ e−βĤ ] ∼
∑
{x0}

e−SE [x0,0,0] =
∑
{x0}

e−β
λ2

2
(W ′(x0))2 =

∑
{x0}

1 .

This is not yet correct. One must add the semiclassical corrections due to the quantum fluctua-
tions around the “classical vacua” [x0 + δx(τ), ψ(τ), ψ̄(τ)] that are identified by considering the
quadratic part in [δx(τ), ψ(τ), ψ̄(τ)] from the expansion of the action around [x0, 0, 0]. These
corrections correspond to calculating gaussian path integrals and give rise to functional deter-
minants. Let us try to calculate them. Expanding the action in a Taylor series around the
trajectory [x0, 0, 0] and keeping only the quadratic part in [δx(τ), ψ(τ), ψ̄(τ)], one finds

SE[x, ψ, ψ̄] =

∫ β

0

dτ

[
1

2
(∂τδx)2 +

λ2

2

(
W ′(x0) +W ′′(x0)δx+ · · ·

)2

+ ψ̄ψ̇ + λ(W ′′(x0) + · · · )ψ̄ψ
]

=

∫ β

0

dτ

[
1

2
δx[−∂2

τ + λ2(W ′′(x0))2]δx+ ψ̄[∂τ + λW ′′(x0)]ψ

]
+ · · · . (157)

The gaussian path integral over [δx(τ), ψ(τ), ψ̄(τ)] produces

Tr [(−1)F̂ e−βĤ ] =
∑
{x0}

∫
P

DδxDψDψ̄ e−SE [x0+δx,ψ,ψ̄]

=
∑
{x0}

DetP [∂τ + λW ′′(x0)]

Det
1/2
P [−∂2

τ + λ2(W ′′(x0))2]
. (158)

30



These determinants are defined by the product of the eigenvalues. A basis of periodic functions
with period β is given by

fn(τ) = e
2πinτ
β n ∈ Z . (159)

They are also the eigenfunctions of the differential operators that appear in (158)

[∂τ + λW ′′(x0)]fn(τ) = λnfn(τ) ⇒ λn =
2πin

β
+ λW ′′(x0)

[−∂2
τ + (λW ′′(x0))2]fn(τ) = Λnfn(τ) ⇒ Λn =

(2πn

β

)2

+ (λW ′′(x0))2

so that

DetP [∂τ + λW ′′(x0)]

Det
1/2
P [−∂2

τ + λ2(W ′′(x0))2]
=
∏
n∈Z

λn

Λ
1/2
n

=
∏
n∈Z

2πin
β

+ λW ′′(x0)[(
2πn
β

)2

+ (λW ′′(x0))2
]1/2

=
λW ′′(x0)

|λW ′′(x0)|
∏
n>0

[2πin
β

+ λW ′′(x0)][−2πin
β

+ λW ′′(x0)](
2πn
β

)2

+ (λW ′′(x0))2

=
W ′′(x0)

|W ′′(x0)|
. (160)

The result is indeed independent of λ, and we have obtained the following value of the Witten
index

Tr [(−1)F̂ e−βĤ ] =
∑
{x0}

W ′′(x0)

|W ′′(x0)|
. (161)

N = 2, D = 1 superspace

Superspace is a useful construction that gives a geometrical interpretation of supersymme-
try. It allows to formulate theories that are manifestly supersymmetric. It is constructed by
adding anticommuting coordinates to the usual space-time coordinates, and supersymmetry
transformations are intepreted as arising from translations in the anticommuting directions.
We exemplify this construction for the previous mechanical model with N = 2 supersymmetry,
considered as a theory in (0 + 1) space-time dimensions. The extension to (3 + 1) space-time
dimensions is conceptually similar, but algebraically more demanding. The N = 1 superspace
is also presented, as it is sometimes used in worldline description of spin 1/2 fields.

Time translational invariance
To appreciate the ideas underlying the construction of superspace, it is useful to review

in a critical way the main points that guarantee the construction of actions invariant under
translations in time (which we interpret as a space with one dimension). They will guide us in
the construction of superspace, where supersymmetry is interpreted geometrically as a suitable
translation along Grassmann directions.

In the case of a single degree of freedom carried by the variable x(t), an infinitesimal time
translation (t→ t− a) is given by a transport term

δ
T
x(t) ≡ x′(t)− x(t) = aẋ(t) = (−iaH)x(t) (162)
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where in the last form we have used the differential operator H ≡ i ∂
∂t

. This operator is
seen as the generator of a one parameter group of abelian transformations, the group of time
translations that is isomorphic to R (the real numbers with the addition as group product),
and indeed it satisfies the corresponding Lie algebra

[H,H] = 0 . (163)

A finite transformation can be obtained by exponentiation x′(t) = e−iaHx(t) = x(t+ a). Time
derivatives of x(t) transform similarly, with a rule having the same general structure

δ
T
ẋ(t) ≡ ẋ′(t)− ẋ(t) =

∂

∂t
(δ
T
x(t)) = aẍ(t) = (−iaH)ẋ(t) (164)

i.e. they are generated by the same differential operator.
Invariant actions can be obtained as integrals in time of a lagrangian that depends on time

only implicitly, through the dynamical variables and their derivatives only,

S[x] =

∫
dt L(x, ẋ) . (165)

Indeed, as consequence of (162) and (164) it follows that

δ
T
L(x, ẋ) = δ

T
x
∂L

∂x
+ δ

T
ẋ
∂L

∂ẋ
= a

dx

dt

∂L

∂x
+ a

dẋ

dt

∂L

∂ẋ

= a
d

dt
L(x, ẋ) =

d

dt
(aL(x, ẋ)) (166)

so that

δ
T
S[x] =

∫
dt δ

T
L(x, ẋ) =

∫
dt

d

dt
(aL(x, ẋ)) = 0 (167)

which vanishes up to boundary terms. This is enough to prove invariance.

N = 2 superspace
The superspace R1|2 (N = 2 superspace in d = 1) is defined by its coordinates

(t, θ, θ̄) ∈ R1|2 (168)

where (θ, θ̄) are complex Grassmann variables. The generator of time translations is again the
differential operator

H = i
∂

∂t
. (169)

In addition, one introduces the differential operators

Q =
∂

∂θ
+ iθ̄

∂

∂t
, Q̄ =

∂

∂θ̄
+ iθ

∂

∂t
(170)

that realize the algebra of N = 2 supersymmetry

{Q, Q̄} = 2H , {Q,Q} = {Q̄, Q̄} = 0 , [Q,H] = [Q̄,H] = 0 . (171)

Translations generated by these differential operators on functions of superspace produce su-
persymmetry transformations.

32



Superfields
Superfields are defined to begin with as functions of superspace, and are used as dynamical

variables in the construction of supersymmetric models. In addition they are required to have
specific transformation rules under supersymmetry, as we shall discuss. Let us consider the
example of a scalar superfield X(t, θ, θ̄), taken to be Grassmann even. Expanded in components
(that is performing a Taylor expansion in the anticommuting variables) it reads

X(t, θ, θ̄) = x(t) + iθψ(t) + iθ̄ψ̄(t) + θθ̄F (t) . (172)

The last component is traditionally called F (and should not be confused with the fermion num-
ber). Supersymmetry transformations on superfields are generated by the differential operators
Q and Q̄

δ
S
X(t, θ, θ̄) = (ε̄Q+ εQ̄)X(t, θ, θ̄) (173)

where ε and ε̄ are Grassmann parameters. This definition generalizes the similar one for in-
finitesimal time translation given in eq. (162). Expanding both sides in components one obtains

δ
S
x = iεψ̄ + iε̄ψ

δ
S
ψ = −ε(ẋ+ iF )

δ
S
ψ̄ = −ε̄(ẋ− iF )

δ
S
F = ε̄ψ̇ − ε ˙̄ψ (174)

to be compared with (140). In general, one call superfields only those functions of superspace
that transform as (173) under supersymmetry transformation.

Covariant derivatives and supersymmetric actions
To identify invariant actions it is useful to introduce the covariant derivatives (covariant

under supersymmetry transformations), defined by

D =
∂

∂θ
− iθ̄ ∂

∂t
, D̄ =

∂

∂θ̄
− iθ ∂

∂t
(175)

and characterized by the fundamental property of anticommuting with the generators of super-
symmetry in (170)

{D,Q} = {D, Q̄} = {D̄,Q} = {D̄, Q̄} = 0 . (176)

One may note that D and D̄ differ from the operators Q and Q̄ only by the sign of the second
term, and satisfy the algebra

{D, D̄} = −2i∂t , {D,D} = {D̄, D̄} = 0 . (177)

Thanks to these properties, covariant derivatives of superfields are again superfields, meaning
that they transform under supersymmerty as the original superfield in (173)

δ
S
(DX) = D(δ

S
X) = D

(
(ε̄Q+ εQ̄)X

)
= (ε̄Q+ εQ̄)DX . (178)

Similarly for D̄X. As a consequence a lagrangian L(X,DX, D̄X), function of the superspace
point only implicitly through dynamical superfields and their covariant derivatives, (that is
without any explicit dependence on the point of superspace) transforms as

δ
S
L(X,DX, D̄X) = (ε̄Q+ εQ̄)L(X,DX, D̄X) . (179)
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Actions defined by integrating over the whole superspace

S[X] =

∫
dtdθ̄dθ L(X,DX, D̄X) (180)

are manifestly invariant (up to boundary terms), as they transform as integrals of total deriva-
tives.

In particular, the model described by

S[X] =

∫
dtdθ̄dθ

(
1

2
DXD̄X +W (X)

)
(181)

that depends on an arbitrary function W (x) is manifestly supersymmetric. A direct integration
over the anticommuting coordinates of superspace shows that it reproduces the action in eq.
(136). In a more elegant fashion, one uses the algebra of covariant derivatives to obtain the
same final result. Let us show this in a telegraphic way. Up to total derivatives one may write

S[X] =

∫
dtdθ̄dθ

(
1

2
DXD̄X +W (X)

)
=

∫
dtD̄D

(
1

2
DXD̄X +W (X)

) ∣∣∣
θ,θ̄=0

=

∫
dt

(
−1

2
D̄DXDD̄X − iDXD̄Ẋ +W ′′(X)D̄XDX +W ′(X)D̄DX

) ∣∣∣
θ,θ̄=0

and using the projections on the first component of the various superfields

X
∣∣∣
θ,θ̄=0

= x(t)

DX
∣∣∣
θ,θ̄=0

= iψ(t)

D̄X
∣∣∣
θ,θ̄=0

= iψ̄(t)

DD̄X
∣∣∣
θ,θ̄=0

= −(F + iẋ)

D̄DX
∣∣∣
θ,θ̄=0

= F − iẋ

one finds (up to total derivatives)

S[X] =

∫
dt

(
1

2
ẋ2 +

1

2
F 2 + iψ̄ψ̇ +W ′(x)F −W ′′(x)ψ̄ψ

)
. (182)

Eliminating the auxiliary field F through its algebraic equation of motion (F = −W ′(x)) one
recovers the action in (136), which is thus guaranteed to be supersymmetric by the superspace
construction.

N = 1, D = 1 superspace

A superspace can also be constructed for N = 1 supersymmetry, with a real (i.e. hermitian)
supercharge. It is used in worldline descriptions of spin 1/2 fields, where the Γi matrices
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appearing in the Dirac equations are realized on the worldline by real Grassmann variables ψi

(worldline Majorana fermions). Indeed, the simple model

S[x, ψ] =

∫
dt

(
1

2
ẋiẋi +

i

2
ψiψ̇i

)
(183)

has N = 1 supersymmetry and appears in first quantized descriptions of the Dirac field. One
can give a superspace construction to prove its supersymmetry. The N = 1 supersymmetry
algebra {Q,Q} = 2H is realized by the differential operators

Q =
∂

∂θ
+ iθ

∂

∂t
, H = i

∂

∂t
(184)

that act on functions of a superspace with coordinates (t, θ). The susy covariant derivative is
given by

D =
∂

∂θ
− iθ ∂

∂t
(185)

and anticommutes with Q. Using the superfields

X i(t, θ) = xi(t) + iθψi(t) (186)

one can construct in superspace the manifestly supersymmetric action

S[X] =
i

2

∫
dtdθDX iẊ i (187)

which reduces to (183) when passing to the superfield components. The susy transformations
are realized geometrically by

δ
S
X i = εQX i (188)

where ε is an infinitesimal real Grassmann parameter. In components they reduce to

δ
S
xi = iεψi , δ

S
ψi = −εẋi . (189)

They are easily seen to leave the action (183) invariant. An application of the Noether method
shows that the associated conserved charge is Q = ψiẋi.
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