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1 Foreword

General Relativity is a vast subject with many books available. In this class, I will use two
main textbooks to guide you through the basics. The first one is S. Weinberg: Gravitation and
Cosmology”, John Wiley & Sons 1972, which covers tensor analysis and Einstein’s equation
(chapters 3-7). The second one is H. Ohanian and R. Ruffini: Gravitation and Spacetime”,
CUP 2013, which offers more insights on classical tests, Schwarzschild black hole solution, and
gravitational waves.

These notes are supplementary and incomplete. They will only cover some selected topics
and fill in some gaps that the textbooks may leave. Therefore, you should rely on the textbooks
as your primary source of study.

2 The principle of equivalence of gravitation and inertia

You can find more details about this topic in Chapter 3 of [1], which I recommend you to read.
Newton’s law of universal gravitation tells us how massive bodies attract each other with

gravitational forces. Suppose we haveN particles with inertial massesm
(I)
k , gravitational masses

m
(G)
k , and positions x⃗k, with k = 1, .., N . Then, the gravitational force on the k-th particle is

given by

m
(I)
k

d2x⃗k

dt2
= G

∑
l ̸=k

m
(G)
k m

(G)
l

x⃗l − x⃗k

|x⃗l − x⃗k|3
. (1)

In addition, it is found that the inertial mass and the gravitational mass of a particle are
equal, as confirmed by experiments. This means that we can use the same mass for both the
acceleration and the attraction of a particle, i.e. m

(I)
k = m

(G)
k for any k.

The principle of equivalence of gravitation and inertia is based on this equality of masses
and states that: In any gravitational field, we can always find a local inertial frame (a free-
falling frame) at any point in spacetime, such that near that point the laws of nature look like
the ones in special relativity, where no gravitational field is present.

This principle helps us to describe how gravity works and to find the equations that govern
it (Einstein’s equations). To apply this principle, we need to use tensor calculus, which allows
us to change coordinates in spacetime in any way we want. This is a branch of mathematics
called differential geometry. Einstein illustrated this principle with the example of an elevator
that is falling freely under gravity.

The force of gravity on a point particle

Let us use the above principle to find out how one can describe the force of gravity that
acts on a point particle of mass m. In the reference frame with coordinates xµ, one observes a
particle that feels a gravitational force. We have to discover how to describe mathematically
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this force. Thus, we use the principle of equivalence, which assure us that there must exist
an inertial frame with coordinates ξα (a frame in free fall), such that locally (i.e. in a small
neighborhood of the point where the particle is located and for a small amount of time around
the time of observation) the particle satisfies the equations of motion of a free particle as known
from the theory of special relativity

d2ξα

dτ 2
= 0 (2)

where the proper time τ is computed using the Minkowski metric ηαβ

dτ 2 = −ηαβdξαdξβ . (3)

Then, we can go back to the original frame xµ and recognize how the gravitational force is
described. We use the relations between the coordinate systems, i.e. ξα = ξα(x) and its inverse
xµ = xµ(ξ), to compute by the chain rule

0 =
d2ξα

dτ 2
=

d

dτ

(∂ξα
∂xµ

dxµ

dτ

)
=

∂2ξα

∂xν∂xµ

dxν

dτ

dxµ

dτ
+

∂ξα

∂xµ

d2xµ

dτ 2
. (4)

This equation is written more simply by multiplying with ∂xλ

∂ξα
with a contraction on the index

α, and using
∂xλ

∂ξα
∂ξα

∂xµ
=

∂xλ

∂xµ
= δλµ . (5)

One finds
d2xµ

dτ 2
+ Γµ

νλ

dxν

dτ

dxλ

dτ
= 0 (6)

where we have defined the affine connection

Γλ
µν =

∂xλ

∂ξα
∂2ξα

∂xµ∂xν
(7)

and renamed indices. The affine connection is symmetric under exchange of the lower indices

Γλ
µν = Γλ

νµ (8)

because derivatives commute. Finally, one must express the proper time (3) in terms of the
new coordinates

dτ 2 = −ηαβdξαdξβ = −ηαβ
∂ξα

∂xµ
dxµ ∂ξ

β

∂xν
dxν (9)

and write it in the form
dτ 2 = −gµν(x)dxµdxν (10)

where the metric tensor gµν is defined by

gµν(x) = ηαβ
∂ξα

∂xµ

∂ξβ

∂xν
. (11)

There is also a direct relation between the metric tensor (which we interpret as the poten-
tial of the gravitational force) and the affine connection (the coefficients that determine the
gravitational force on the particle). The relation is found as follows: one differentiates eq. (11)
with respects to xλ

∂gµν
∂xλ

= ηαβ
∂2ξα

∂xλ∂xµ

∂ξβ

∂xν
+ ηαβ

∂ξα

∂xµ

∂2ξβ

∂xλ∂xν
(12)
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that using (7) one rewrites it as

∂gµν
∂xλ

= Γρ
λµgρν + Γρ

λνgρµ . (13)

Then, computing
∂gµν
∂xλ

+
∂gλν
∂xµ

− ∂gµλ
∂xν

= 2gρνΓ
ρ
λµ (14)

and using the inverse metric gσν , that satisfies gσνgνρ = δσρ , one finds

Γσ
λµ =

1

2
gσν

(∂gµν
∂xλ

+
∂gλν
∂xµ

− ∂gλµ
∂xν

)
. (15)

One may use the shorthand notation ∂µ ≡ ∂
∂xµ , rename indices, and write this formula as

Γλ
µν =

1

2
gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν) . (16)

The Newtonian limit

To relate to Newton’s theory, let us look at a simple case of a slow-moving particle in a
weak and stationary gravitational field. Since the particle moves slowly, we can ignore all but
the zero-component of the 4-velocity in (6)

dxµ

dτ
=

(dx0

dτ
,
dx⃗

dτ

)
= (cγ, v⃗γ) = (γ, β⃗γ) (17)

as |β⃗| ≪ 1 for a slow motion (in our units c = 1), and find

d2xµ

dτ 2
+ Γµ

00

dt

dτ

dt

dτ
= 0 . (18)

For a stationary field, the time derivatives of the metric vanish and one is left with

Γµ
00 = −

1

2
gµν∂νg00 . (19)

For a weak field we may use nearly Cartesian coordinates and write the metric gµν as a weak
perturbation of the Minkowski metric ηµν

gµν = ηµν + hµν . (20)

At lowest order in hµν we find

Γµ
00 = −

1

2
ηµν∂νh00 →

{
Γ0
00 = 0

Γi
00 = −1

2
∂ih00

(21)

and the equations of motion (6) simplify to
d2x0

dτ 2
≡ d2t

dτ 2
= 0

d2x⃗

dτ 2
=

1

2
∇⃗h00

( dt

dτ

)2

(22)

(23)
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The first equation tells us that t is proportional to τ , then using this proportionality we find
that the second equation may be rewritten as

d2x⃗

dt2
=

1

2
∇⃗h00 (24)

that takes the Newtonian form
d2x⃗

dt2
= −∇⃗ϕ (25)

under the identification
h00 = −2ϕ . (26)

For example, consider the case of the Newtonian potential created by a large mass M placed
at the origin

ϕ = −GM

r
(27)

then the ‘00’ component of the metric takes the form

g00 = η00 + h00 = −1− 2ϕ) = −1 + 2GM

r
. (28)

Note that ϕ is adimensional (we use c = 1). Some values are as follows: on the surface of the
sun ϕsun ≈ 10−6, on the earth ϕearth ≈ 10−9, on a white dwarf ϕwd ≈ 10−4, on the surface of
a proton ϕproton ≈ 10−39. Note also that |g00| < 1, which is related to gravitational time dilation.

Gravitational time dilation

A clock in a gravitational field runs slower than a clock in a flat space. To see why, we can
use the principle of equivalence and imagine a locally inertial frame where gravity has no effect
on the clock. In this frame, we can choose coordinates ξ′α where the clock is stationary and
ticks at regular intervals ∆τ as set by the maker. This is the proper time of the clock and we
have

∆τ ≡ dt′ = dξ′0 . (29)

Thus, ∆τ is the clock’s basic unit. It could be, for example, the period of a wave from a specific
atomic transition from an atom at rest and in the absence of gravity. In another inertial frame
with coordinates ξα, where the clock moves, the formula becomes

∆τ =
√

(dξ′0)2 =
√
−ηαβdξαdξβ (30)

as given by special relativity. In the frame with coordinates xµ, where gravity affects the clock,
the space-time interval dxµ between ticks is fixed by

∆τ =
√
−ηαβdξαdξβ =

√
−ηαβ

∂ξα

∂xµ

∂ξβ

∂xν
dxµdxν =

√
−gµν(x)dxµdxν . (31)

If the clock moves with velocity dxµ

dt
, were t = x0 is the time coordinate of the frame, one may

write

∆τ =

√
−gµν(x)

dxµ

dt

dxν

dt
dt . (32)

For a clock at rest in the gravitational field we set dx⃗
dt

= 0

∆τ =
√
−g00(x)dt (33)

4



to find that

dt =
∆τ√
−g00(x)

(34)

is time dilated (recall that in the weak field limit g00 = −1+ 2GM
r

has modulus smaller than 1).
To measure this gravitational time dilation, one has to compare time dilation at different

points, otherwise the measuring device suffers the same time delay. Thus, taking two different
points xµ

1 and xµ
2 one equates

∆τ =
√
−g00(x1)dt1 =

√
−g00(x2)dt2 (35)

to find

dt1
dt2

=

√
g00(x2)

g00(x1)
(36)

that for the frequencies ν = 1
dt

corresponding to the periods dt give

ν2
ν1

=

√
g00(x2)

g00(x1)
. (37)

In the weak field limit with g00(x) = −1 − 2ϕ(x), setting ν1 = ν and ν2 = ν + ∆ν, we find a
change in frequency ∆ν given by

ν2
ν1

=
ν +∆ν

ν
= 1 +

∆ν

ν
=

√
g00(x2)

g00(x1)
=

√
1 + 2ϕ(x2)

1 + 2ϕ(x1)
≈ 1 + ϕ(x2)− ϕ(x1) . (38)

For an application, consider an atomic transition at the earth’s surface with position x1 and
frequency ν1. Observe the same transition at the sun’s surface with position x2 and frequency
ν2. The sun’s potential ϕ(x2) is much larger than the earth’s potential ϕ(x1), so that the latter
can be ignored, and we get

∆ν

ν
= ϕ(x2)− ϕ(x1) ≈ ϕ(x2) = −

GMsun

Rsun

≈ −2.12 10−6 . (39)

The frequency on the sun is smaller then the frequency seen far away for the same atomic
transition: a gravitational red shift of the frequency is expected, as verified experimentally by
now.

3 The principle of general covariance and tensor analysis

This topic is described in Chapter 4 of [1].
The principle of equivalence can be replaced by a more efficient principle of general covariance,
which allows us to find in an easier way the correct equations valid in the presence of arbitrary
gravitational fields. The principle of general covariance states that:
“A physical equation is valid in an arbitrary gravitational field if it satisfies two conditions:
(i) the equation reduces to the special relativistic form in the absence of gravity, where the metric
is the Minkowski metric (gµν → ηµν) and the affine connection vanishes (Γλ

µν → 0).
(ii) the equation is generally covariant, i.e. it keeps the same form under an arbitrary change
of coordinates xµ → x′µ(x).

We can see that the principle of general covariance implies the principle of equivalence by
noting that: point (ii) ensures that the equations are valid in any coordinate system if they are
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valid in one; point (i) then ensures that they are valid in a locally inertial frame, where gravity
is canceled by inertial forces. To apply the principle of general covariance we need to use tensor
analysis, which deals with arbitrary coordinate transformations and in mathematics is part of
differential geometry.

Tensor analysis

Scalars, vectors, and tensors are quantities defined by their behavior under a change of
coordinate system. A change of coordinates is specified by functions

xµ → x′µ = x′µ(x) (40)

that are required to be invertible. One can return to the original frame by using the inverse
functions

xµ = xµ(x′) . (41)

Invertibility requires that

det
∂x′µ

∂xν
̸= 0 . (42)

Notice that using the chain rule for differentiation and using the transformations in (40)–(41),
one finds that

δµν =
∂x′µ

∂x′ν =
∂x′µ

∂xλ

∂xλ

∂x′ν (43)

which tells that the matrix (at any given point in spacetime)

∂x′µ

∂xλ
(44)

is the inverse of the matrix
∂xλ

∂x′ν (45)

and viceversa. Then, one defines scalar, vectors, and tensors by

ϕ(x) → ϕ′(x′) = ϕ(x) scalar

V µ(x) → V ′µ(x′) =
∂x′µ

∂xν
V ν(x) contravariant vector

Wµ(x) → W ′
µ(x

′) =
∂xν

∂x′µ Wν(x) covariant vector

T µν(x)→ T ′µν(x′) =
∂x′µ

∂xλ

∂x′ν

∂xρ
T λρ(x) tensor of rank (2,0)

Sµ
ν(x)→ S ′µ

ν(x
′) =

∂x′µ

∂xλ

∂xρ

∂x′ν S
λ
ρ(x) tensor of rank (1,1)

· · · → · · · · · ·

(46)

and so on for tensors of rank (m,n), where there are m matrices ∂x′µ

∂xν that rotate the m upper
indices, and n matrices ∂xµ

∂x′ν that rotate the n lower indices. For example, the (2, 1) tensor F µν
λ

transforms as

F µν
λ(x) → F ′µν

λ(x
′) =

∂x′µ

∂xρ

∂x′ν

∂xσ

∂xλ

∂x′τ F
ρσ

τ (x) (47)
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Note that with these definitions, contraction of an upper index with a lower index produces
a scalar

V µ(x)Wµ(x) → V ′µ(x′)W ′
µ(x

′) =
∂x′µ

∂xν
V ν(x)

∂xλ

∂x′µWλ(x) =
∂x′µ

∂xν

∂xλ

∂x′µ︸ ︷︷ ︸
δλν

V ν(x)Wλ(x) = V ν(x)Wν(x)

(48)
i.e.

V µ(x)Wµ(x) → V ′µ(x′)W ′
µ(x

′) = V µ(x)Wµ(x) (49)

which is precisely the transformation law of a scalar.
Not all quantities that we have defined so far are tensors: while the metric gµν(x) is a rank

(0, 2) tensor

gµν(x) → g′µν(x
′) =

∂xλ

∂x′µ
∂xρ

∂x′ν gλρ(x) (50)

the affine connection Γλ
µν is not a tensor as it transforms in a more complicated way

Γλ
µν(x) → Γ′λ

µν(x
′) =

∂x′λ

∂xα

∂xβ

∂x′µ
∂xγ

∂x′ν Γ
α
βγ(x) +

∂x′λ

∂xα

∂2xα

∂x′µ∂x′ν (51)

where the second term, which can also be written as

∂x′λ

∂xα

∂2xα

∂x′µ∂x′ν = − ∂xα

∂x′µ
∂xβ

∂x′ν
∂2x′λ

∂xα∂xβ
(52)

breaks the tensorial behavior.
Thanks to these definitions, tensorial equations, that are defined as equations that equate

tensors of the same rank, take the same form in all reference frames: e.g. if Aµν and Bµν are
tensors then the tensorial equation

Aµν(x) = Bµν(x) (53)

maintains the same form in all frames, i.e.

Aµν(x) = Bµν(x) ←→ A′
µν(x

′) = B′
µν(x

′) . (54)

The same equation can be written also as

Aµν(x)−Bµν(x) = 0 (55)

where the right-hand side is understood to contain the zero tensor of appropriate rank, i.e. the
tensor which has all components null (then, it is easily verified that the components vanish in
all frames).

Tensors are basically elements of a vector space of suitable dimension. One can verify the
following algebraic properties of tensors (tensor algebra):

A) A linear combination of tensors of the same rank is a tensor of the same rank.
E.g. if Aµν and Bµν are tensors and a and b scalars then

Tµν = aAµν + bBµν (56)

is a tensor.
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B) Tensor product (or direct product) of tensors.
The multiplications of the tensors components give rise to a new tensor of appropriate rank.
E.g if Aµν and Bµ are tensors, then

Tµν
λ = AµνB

λ (57)

is a tensor of rank (1, 2).
C) Contraction of a contravariant index with a covariant index of a tensor produces a tensor

of lower rank. E.g. taking the tensor Tµν
λ, one obtains a vector Aµ by setting

Tµν
ν = Aµ , (58)

and another vector by
Tµν

µ = Bν . (59)

Indeed, we realized in (49) that index contraction gives rise to a scalar.
Finally, indices of a tensor may be raised and lowered by using the metric tensor gµν , and

its inverse gµν that satisfies
gµν(x)g

νλ(x) = δλµ. (60)

For example, from the contravariant vector V µ one obtains the covariant vector Vµ as

Vµ = gµνV
ν (61)

and similarly, from the covariant vector Vµ one obtains the contravariant vector V µ by

V µ = gµνVν . (62)

Covariant derivatives

Derivatives of tensors are not tensors themselves. This causes a problem when defining
tensorial equations that should contain derivatives. This problem is solved by using the concept
of covariant derivatives, which are derivatives that when applied to tensors produce new tensors.

To expose clearly the problem, let us verify that for a vector field V ν(x) its derivative

∂µV
ν(x) =

∂V ν(x)

∂xµ
(63)

is not a tensor. We compute

∂µV
ν(x) → ∂′

µV
′ν(x′) =

∂V ′ν(x′)

∂x′µ =
∂

∂x′µ

(
V β(x)

∂x′ν

∂xβ

)
=

∂xα

∂x′µ
∂

∂xα

(
V β(x)

∂x′ν

∂xβ

)
=

∂xα

∂x′µ

(∂V β(x)

∂xα

∂x′ν

∂xβ
+ V β(x)

∂2x′ν

∂xα∂xβ

)
=

∂xα

∂x′µ
∂x′ν

∂xβ
∂αV

β(x) + V β(x)
∂xα

∂x′µ
∂2x′ν

∂xα∂xβ

(64)

where the first term would be the one expected for a tensorial transformation, but the second
term breaks the tensorial character. A similar transformation appears in the transformation
rule of the affine connection, see eqs. (51)–(52), which can be used to introduce the concept of
covariant derivative of the vector field, defined by

∇µV
ν = ∂µV

ν + Γν
µλV

λ (65)
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which then transforms as a tensor

∇µV
ν(x) → ∇′

µV
′ν(x′) =

∂xρ

∂x′µ
∂x′ν

∂xσ
∇ρV

σ(x) . (66)

Geometrically, the connection connect tangent spaces at different nearby points and allows to
define a parallel transport of vectors which are compared in defining the covariant derivative.
The concept of a covariant derivative allows to introduce tensorial equations with derivatives,
and thus identify the correct differential equations describing physical systems under the force
of gravity.

In general, covariant derivatives of contravariant and covariant vectors are defined by

∇µV
ν = ∂µV

ν + Γν
µλV

λ (67)

∇µVν = ∂µVν − Γλ
µνVλ (68)

and similarly for more general tensors, which will have a connection for each index, e.g.

∇µV
νλ

ρ = ∂µV
νλ

ρ + Γν
µαV

αλ
ρ + Γλ

µαV
να

ρ − Γα
µρV

νλ
α . (69)

The covariant derivative satisfies the Leibniz rule for taking the derivative of products of
tensors. For example, one may verify that on a scalar the covariant derivative reduces to the
usual derivative consistently with the Leibniz rule: taking the scalar V µWµ, its derivative can
be expanded as

∂ν(V
µWµ) = ∂νV

µWµ + V µ ∂νWµ (70)

which of course must be correct, while using covariant derivatives

∂ν(V
µWµ) = ∇ν(V

µWµ) = ∇νV
µWµ + V µ∇νWµ

= (∂νV
µ + Γµ

νλV
λ)Wµ + V µ(∂νWµ − Γλ

νµWλ)

= ∂νV
µWµ + V µ ∂νWµ

(71)

as renaming indices it is verified that the terms with connections cancel each other.
The covariant derivative of the metric vanishes

∇λgµν = ∂λgµν − Γσ
λµgσν − Γσ

λνgµσ = 0 , (72)

a fact which is referred to by saying that the metric is covariantly constant. This can be verified
using eq. (16), that relates the affine connection to the derivative of the metric. In turn, eq.
(72) can be used to rederive relation (16). Let us show this point. Since the metric is covariantly
constant we may write

0 = ∇λgµν +∇µgλν −∇νgλµ

= ∂λgµν − Γσ
λµgσν − Γσ

λνgµσ

+ ∂µgλν − Γσ
µλgσν − Γσ

µνgλσ

− ∂νgλµ + Γσ
νλgσν + Γσ

νµgλσ

= ∂λgµν + ∂µgλν − ∂νgλµ − 2Γσ
λµgσν

(73)

where we have used the symmetry on the first two indices of the affine connection. Then, using
the inverse metric we find

Γσ
λµ =

1

2
gσν(∂λgµν + ∂µgλν − ∂νgλµ) (74)

as expected.
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Finally, let us consider a vector field defined only along a curve, rather then all over space-
time. The covariant derivative of a vector V µ(τ) defined along a curve parametrized by xµ(τ),
where τ is the parameter, takes the form

DV µ

dτ
=

dV µ

dτ
+

dxρ

dτ
Γµ
ρσV

σ . (75)

As an example, consider a worldline parameterized by xµ(τ). Its derivative with respect to the
parameter τ gives the four-velocity, i.e. the tangent vector to the curve

dxµ

dτ
(76)

which is easily verified to have a vector transformations law (just use the chain rule for differ-
entiation). Its covariant derivative takes the form

D

dτ

dxµ

dτ
=

d2xµ

dτ 2
+ Γµ

ρσ

dxρ

dτ

dxσ

dτ
(77)

which is again a vector defined along the curve. With the notation

dxµ

dτ
≡ ẋµ (78)

we usually write it as
D

dτ

dxµ

dτ
= ẍµ + Γµ

ρσẋ
ρẋσ . (79)

The equation
D

dτ

dxµ

dτ
= 0 (80)

is known as the geodesic equation, already encountered in (6) and used to describe the motion
of a particle under the force of gravity.

4 Effects of gravitation

This topic is described in Chapter 5 of [1].
We now make use of the tensor calculus introduced earlier to study how gravity affects the
equations of mechanics and electromagnetism studied in special relativity. We make use of
the principle of general covariance. We take the equations we know from special relativity
and rewrite them in a form that makes them generally covariant. This last step is achieved
by identifying the tensors that enter the equations and which describe the physical quantities,
substitute the Minkowski metric ηµν by gµν , and then substitute derivatives of tensors by their
covariant derivatives. In this way we reach equations that are generally covariant, and we have
succeded in introducing the force of gravity according to the principle of general covariance.

Particle mechanics

We know that the motion of a free particle is described in special relativity by eqs. (2)–(3).
Using the particle coordinates xµ they read

d2xµ

dτ 2
= 0 , dτ 2 = −ηµνdxµdxν . (81)
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These equations are easily covariantized. The first derivative with respect to the proper time
dxµ

dτ
defines the 4-velocity, that is easily verified to be a vector. Then, we use the covariant

derivative to keep its vector character

D

dτ

dxµ

dτ
= 0 . (82)

This is the correct covariant equation. In standard notations it takes the form

ẍµ + Γµ
ρσẋ

ρẋσ = 0 . (83)

Similarly, the proper time is covariantized by substituting ηµν by the metric gµν

dτ 2 = −gµνdxµdxν . (84)

To summarize, the covariant extension of eqs. (81) is

D

dτ

dxµ

dτ
= 0 , dτ 2 = −gµνdxµdxν (85)

which is interpreted as including the force of gravity acting on the particle.

Klein-Gordon equation

The Klein-Gordon equation is a relativistic equation for a scalar field ϕ(x). In natural units
(c = ℏ = 1) it reads

(∂µ∂µ −m2)ϕ(x) = 0 (86)

The first derivative of a scalar is already covariant, as it gives rise to a covariant vector without
the need of a connection

∇µϕ = ∂µϕ . (87)

The second derivative requires instead a connection

∇µ∇νϕ = ∂µ∇νϕ− Γλ
µν∇λϕ = ∂µ∂νϕ− Γλ

µν∂λϕ . (88)

Finally, indices are raised covariantly with the inverse metric gµν so that the covariantized
Klein-Gordon equation becomes

(gµν∇µ∇ν −m2)ϕ = 0 (89)

also written as
(∇µ∇µ −m2)ϕ = 0 . (90)

It is customary to denote the covariant d’Alambert operator by a box

□ = ∇µ∇µ (91)

and write the covariant equation also as

(□−m2)ϕ = 0 . (92)
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Electrodynamics

Maxwell’s equations can be written in special relativity as

∂µF
µν = −Jν

∂µFνλ + ∂νFλµ + ∂λFµν = 0
(93)

with the second one solved in terms of the 4-potential Aµ by

Fµν = ∂µAν − ∂νAµ . (94)

Let us see how to covariantize these equations. The second equation in (93) and its solution
(94) are covariantized by substituting derivatives with covariant derivatives

∇µFνλ +∇νFλµ +∇λFµν = 0

Fµν = ∇µAν −∇νAµ

(95)

so that hey become manifestly covariant. However, one may verify that the connection drops
out in all of them, so that the original equations

∂µFνλ + ∂νFλµ + ∂λFµν = 0

Fµν = ∂µAν − ∂νAµ

(96)

were nevertheless covariant. In a sense, these equations do not feel the force of gravity.
As for the first one in (93), one must first raise indices with the general metric gµν

F µν = gµρgνσFρσ (97)

and then write it using a covariant derivative

∇µF
µν = −Jν . (98)

This is a covariant equation if Jν is a contravariant vector, which we assume to be the case.

The Lorentz force and gravity

Finally, let us include gravity in the Lorentz force equation (with c = 1)

m
d2xµ

dτ 2
= eF µν dxν

dτ
(99)

by covariantizing it. We obtain

m
D

dτ

dxµ

dτ
= eF µνgνλ

dxλ

dτ
(100)

recalling however that one must be careful with indices that are lowered and raised now with gµν
and gµν . To better expose the places where the metric sits, we rewrite the covariant equation
as

m
D

dτ

dxµ

dτ
= egµνFνλ

dxλ

dτ
(101)

where Fµν = ∂µAν − ∂νAµ, or more explicitly as

m(ẍµ + Γµ
νλẋ

ν ẋλ) = egµνFνλẋ
λ . (102)
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5 Curvature

This topic is described in Chapter 6 of [1].
The equations of motion for the gravitational field describe the behavior of the metric

tensor gµν(x), which acts as the potential for the gravitational force. To ensure covariance,
these equations must be constructed using tensors. However, it can be proven that no tensor
can be constructed solely from the metric gµν and its first derivatives ∂λgµν . This is because the
covariant derivatives of the metric vanish, ∇λgµν = 0, while the affine connection Γλ

µν , defined
as

Γλ
µν =

1

2
gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν), (103)

is not a tensor. Both Γλ
µν and ∂λgµν contain 40 independent components, and the former is

equivalent to the latter.
One can construct tensors by including also second derivatives of the metric. To find them

one can use covariant derivatives. This provides a quick way of identifying such tensors.
Covariant derivatives do not commute and they may be used to define implicitly the Rie-

mann curvature tensor Rµν
λ
ρ by the relation

[∇µ,∇ν ]V
λ = Rµν

λ
ρV

ρ . (104)

The left-hand side is a tensor, so must be the right-hand side, and in particular the object
Rµν

λ
ρ must indeed be a tensor. It is manifestly antisymmetric under the exchange of the first

two indices µ, ν. A direct calculation shows that

Rµν
λ
ρ = ∂µΓ

λ
νρ − ∂νΓ

λ
µρ + Γλ

µσΓ
σ
νρ − Γλ

νσΓ
σ
µρ . (105)

A mnemonic for remembering this structure is to write

Rµν
λ
ρ = ∇̄µΓ

λ
νρ − (µ↔ ν) (106)

where ∇̄µ contains a connection for the upper index only (in general, covariant derivatives are
defined only for tensors).

Algebraic properties of the Riemann tensor are best written lowering the upper index with
the metric, Rµνλρ = gλσRµν

σ
ρ. They are the following ones

Rµνλρ = Rλρµν (symmetry) (107)

Rµνλρ = −Rνµλρ = −Rµνρλ (antisymmetry) (108)

Rµνλρ +Rλµνρ +Rνλµρ = 0 (cyclicity) . (109)

A way of proving them is to write them down explicitly in terms of the metric using (105) and
(103). This is very laborious, but correct.

Additional tensors can be constructed by index contraction and are the Ricci tensor and
the curvature scalar

Rµν = Rλµ
λ
ν (Ricci tensor) (110)

R = gµνRµν (Ricci scalar or curvature scalar) . (111)

Other contractions do not give rise to independent tensors. From (107) it follows that the Ricci
tensor is symmetric

Rµν = Rνµ . (112)
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One can compute the number of independent components CD of the Riemann tensor in
arbitrary dimensions D. They are given by

CD =
1

2

(1
2
D(D − 1)

)(1
2
D(D − 1) + 1

)
− D(D − 1)(D − 2)(D − 3)

4!

=
1

12
D2(D2 − 1) .

(113)

This values is obtained by considering the Riemann tensors as a symmetric matrix RAB where
A and B stands for the ordered pair of indices (µν) with µ < ν. The last term subtracts the
independent relations in (109), which is an expression that can be proven to be completely
antisymmetric under exchange of indices. A few values are reported in the following table

D D4 CD

1 1 0
2 16 1
3 81 6
4 256 20
5 625 50

Of course, we use D = 4 for our purposes: we see that the Riemann tensor has 20 components
while the Ricci tensor has 10 components like the metric.

5.1 Bianchi identities

The Riemann tensors satisfies the following differential Bianchi identities

∇µRνλαβ +∇νRλµαβ +∇λRµναβ = 0 . (114)

The sum over cyclic permutation of the first three indices makes the total tensor antisymmetric
in those indices.

One may contract the Bianchi identities on the indices (ν, α) (i.e. multiplying by gνα) to
find

∇µRλβ +∇αRλµαβ −∇λRµβ = 0 (115)

and contracting once more the indices (λ, β) one finds

∇µR− 2∇αRµα = 0 → ∇µ
(
Rµν −

1

2
gµνR

)
= 0 . (116)

It is customary to define the Einstein tensor Gµν by

Gµν = Rµν −
1

2
gµνR (117)

which is covariantly conserved as seen form eq. (116), ∇µGµν = 0.

Exercizes
These exercises help in proving some of the symmetry properties of the Riemann tensor.

Ex.1 Recalling that the metric is covariantly constant (∇µgαβ = 0) use [∇µ,∇ν ]gαβ = 0 to prove
the antisymmetry in the last two indices of the Riemann tensor, Rµναβ = −Rµνβα.

Ex. 2 Rewriting the Bianchi identities for electromagnetism using covariant derivatives, show

14



the cyclic property of the Riemann tensor.

Ex. 3 From the Jacobi identity valid for arbitrary operators A,B,C

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

which is a consequence of the associativity of the multiplication of operators, consider the case
with (A,B,C) ≡ (∇µ,∇ν ,∇λ) acting on a vector field V ρ, i.e.(

[∇µ, [∇ν ,∇λ]] + [∇ν , [∇λ,∇µ]] + [∇λ, [∇µ,∇ν ]]
)
V ρ = 0

and prove the Bianchi identities in (114).

6 Einstein’s equations of general relativity

This topic is described in Chapter 7 of [1].
We now come to the Einstein’s field equations and write down the main equations in our

notations.
Einstein’s equations (the equivalent for the metric of Maxwell’s equations for the potential

Aµ) can be identified by using the principle of general covariance, which embodies the principle
of equivalence. We know that any gravitational field can be made sufficiently small in a small
region by using a local inertial frame (that in fact makes the gravitational field vanish at a
point).

A weak and static field due to non-relativistic matter with mass density ρ(x) is described
by a newtonian potential ϕ, embedded in the component g00 of the metric as

∇2ϕ = 4πGρ (118)

g00 ≈ −(1 + 2ϕ) (119)

where G = 6.67 10−11Nm2/Kg2 is the Newton gravitational constant. For example, a point-like
particle of mass M at rest has a mass density

ρ(x) = Mδ3(x⃗) (120)

and it gives rise to a potential that satisfies the equation

∇2ϕ = 4πGMδ3(x⃗) → ϕ(x) = −GM

r
. (121)

In special relativity mass and energy are equivalent, so that one can take ρ(x) as the energy
density, which appears as the T00 component of the energy-momentum tensor (also named stress
tensor) of the matter system, and rewrite the equation for the gravitational potential as

∇2g00 = −8πGT00 . (122)

Special relativity implies that there must be a tensor Gαβ (tensor under Lorentz transforma-
tions) with component G00 = −∇2g00 (the minus sign is conventional) that can be constructed
with second derivatives of the metric, so that the Lorentz invariant extension of (122) becomes

Gαβ = 8πGTαβ (123)
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where the complete energy-momentum tensor Tαβ appears on the right-hand side. So far, this
is just a consequence of special relativity. Finally, general relativity is obtained by searching
for a general covariant extension that must take the general covariant form

Gµν = 8πGTµν . (124)

The conservation of Tαβ, namely ∂αTαβ = 0 is covariantized to ∇µTµν = 0, and by consistency
also Gµν must be covariantly conserved, i.e. ∇µGµν . The weak and static limit identifies it
uniquely with the Einstein tensor.

These considerations lead to the Einstein’s equations

Rµν −
1

2
gµνR = 8πGTµν (125)

which are generally covariant field equations for the metric gµν . The tensor Tµν is the energy-
momentum tensor of the matter that gravitates. An equivalent way of writing these equations
is to first take the trace (by multiplying with gµν) to find (in four spacetime dimensions)

R− 2R = 8πGT µ
ν → R = −8πGT µ

µ

so that Einstein’s equations take the form

Rµν = 8πG
(
Tµν −

1

2
gµνT

λ
λ

)
. (126)

In vacuum, these equations reduce to
Rµν = 0 . (127)

An additional term with a dimensionful coupling constant Λ with positive mass dimensions,
the so-called cosmological constant, can be added to the equations

Rµν −
1

2
gµνR + Λgµν = 8πGTµν . (128)

Originally introduced and then rejected by Einstein, nowadays it allows to describe the presence
of dark energy in the universe.

Finally, reintroducing by dimensional analysis the speed of light c, Einstein’s equations takes
the form

Rµν −
1

2
gµνR + Λgµν =

8πG

c4
Tµν . (129)

We will continue to use units with c = 1.

7 Harmonic gauge

The gauge symmetry associated to the arbitrary change of coordinates can be used to simplify
the analysis of Einstein’s equations.

The gauge symmetry implies that given a solution gµν(x), also g′µν(x) will be a solution if
the functions in g′µν are obtained by a change of coordinates

g′µν(x
′) = gαβ(x)

∂xα

∂x′µ
∂xβ

∂x′ν . (130)
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Infinitesimally, under the change of coordinates x′µ = xµ − ξµ(x), the metric varies as

δgµν(x) ≡ g′µν(x)− gµν(x) = ξα∂αgµν + (∂µξ
α)gαν + (∂νξ

α)gµα

= ∇µξν +∇νξµ
(131)

The previuos gauge symmetries can be fixed by requiring the harmonic gauge (or De Donder
gauge) conditions

Γµ ≡ gνλΓµ
νλ = 0 ↔ ∂ν(

√
ggνµ) = 0 (132)

These four conditions specify a gauge in which the coordinates are harmonic functions,
just like the cartesian coordinates of flat spacetime, and are sometimes called quasi-cartesian
coordinates.

8 Linearized Einstein’s equations

To study the Einstein’s equations in a linearized apporximation around flat spacetime, one sets
the metric as

gµν(x) = ηµν + hµν(x) (133)

and considers |hµν(x)| ≪ 1. Then one may raise and lower indices with the Minkowski metric

hµν = ηµαηνβhαβ (134)

and define for simplicity the “trace” of hµν

h = ηµνhµν . (135)

Then, one may compute at the linear order in hµν

gµν(x) = ηµν − hµν(x) , g = | det gµν | = 1 + h ,
√
g = 1 +

1

2
h (136)

The Christoffel symbols linearize as

Γρ
µν =

1

2
ηρσ(∂µhνσ + ∂νhµσ − ∂σhµν) =

1

2
(∂µhν

ρ + ∂νhµ
ρ − ∂ρhµν) , (137)

the Riemann tensor as

Rµν
ρ
σ = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + .... =

1

2
∂σ(∂µhν

ρ − ∂νhµ
ρ)− 1

2
∂ρ(∂µhνσ − ∂νhµσ) (138)

and the Ricci tensor

Rνσ = Rµν
µ
σ =

1

2
(∂ν∂

µhσµ + ∂σ∂
µhνµ − ∂ν∂σh−□hνσ) (139)

where now □ = ∂µ∂µ = ηµν∂µ∂ν .
Then, Einstein’s equations in vacuum take the linearized form

□hµν + ∂µ∂νh− ∂µ∂
σhσν − ∂ν∂

σhσµ = 0 . (140)

One can verify that they are gauge invariant under the gauge symmetry, that to lowest order
in hµν simplifies to

δhµν = ∂µξν + ∂νξµ (141)
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where the four components of ξµ are arbitrary functions. These symmetries can be used to
set four gauge-fixing conditions, that may be take to be the linearzied harmonic (De Donder)
gauge

∂σhσµ =
1

2
∂µh (142)

which simplify Einstein’s equations to

□hµν = 0 (143)

which evidently support plane waves solutions (gravitational waves).
It can be shown that only two independent polarizations of the gravitational waves can

exist, just like the electromagnetic waves.

8.1 Electromagnetic waves and physical polarizations

First, let us review the case of the electromagnetic waves which have only two degrees of
freedom, the two possible polarizations of the waves. The introduction of the four-potential Aµ

solves half of the Maxwell equations. The remaining ones in vacuum take the form

∂µFµν = ∂µ(∂µAν − ∂νAµ) = 0 (144)

and are gauge invariant under
δAµ = ∂µθ (145)

with θ an arbitrary function of spacetime. The gauge freedom allows to impose the Lorenz
gauge ∂µAµ = 0. In this gauge the equations simplify to

□Aµ = 0

∂µAµ = 0 .
(146)

Plane wave solution are found using the ansatz (up to an overall normalization) by setting

Aµ(x) = ϵµ(k) e
ik·x + c.c. (147)

where ϵµ(k) is an arbitrary polarization depending on the wave vector kµ, and the exponent

contains the Lorentz invariant phase k · x = kµx
µ = ηµνk

µxν = −k0x0 + k⃗ · x⃗. The notation
c.c. stands for complex conjugation, and makes the solution real. Plugging this ansatz into the
equations (146), one finds a solution when

kµkµ = 0 , kµϵµ(k) = 0 . (148)

Thus, only three polarizations ϵµ(k) are possible. However, one of these polarizations is not
physical, the one with ϵµ(k) ∼ kµ. It does not carry electric and magnetic fields, and thus no en-
ergy and momentum. It can be removed by a gauge transformation. The gauge transformations
that removes it has the form in (145) with

θ(x) ∼ eik·x (149)

that satisfies □θ(x) = 0, and thus does not ruin the Lorenz gauge condition. The gauge
transformation becomes

δAµ = ∂µθ ∼ ikµ e
ik·x (150)
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and shows that the polarization ϵµ(k) ∼ kµ is not physical, as can be removed by an appropriate
gauge transformation. Only two physical polarizations remain.

Let us exemplify this considering the motion along the z axis. We can take

kµ = (k0, k⃗) = (ω, 0, 0, ω) (151)

which solves kµkµ = 0 and producing the phase eik·x = eiω(z−t). The two expected polarizations
can be taken as

ϵ1µ = (0, 1, 0, 0)

ϵ2µ = (0, 0, 1, 0)
(152)

which indeed satisfy
kµϵiµ = 0 , ϵiµ ̸= αkµ . (153)

Considering for example the solution with ϵ1µ, plugging it into (147), and multiplying with an
arbitrary amplitude A0 one finds

A⃗ = A0 cos(ωz − ωt) x̂

E⃗ = −∂A⃗

∂t
= E0 sin(ωz − ωt) x̂

B⃗ = ∇⃗ × A⃗ = B0 sin(ωz − ωt) ŷ

(154)

where E0 = B0 = ωA0, and x̂, ŷ, ẑ the usual unit vectors.
The above plane waves do not carry angular momentum. Plane waves carrying angular

momentum are obtained using the circular polarization defined by

ϵ±µ = ϵ1µ ± iϵ2µ . (155)

They are also said to correspond to the helicity h = ±1, as in a quantum interpretation they
are related to photons carrying angular momentum ±ℏ along the direction of motion (helicity),
and with a wavefunction of the form

Aµ(x) = ϵ±µ (k)e
ikνxν

= ϵ±µ (k)e
i
ℏpνx

ν

(156)

where pµ = ℏkµ is the 4-momentum of the photon.

8.2 Gravitational waves and physical polarizations

We can now consider in a similar way the gravitational waves. We have seen that they satisfy
the equations

□hµν = 0

∂µhµν =
1

2
∂νh

(157)

with the second one describing the harmonic gauge. Plane wave solution can be found using
the ansatz (up to a normalization) by setting

hµν(x) = ϵµν(k) e
ik·x + c.c. (158)

where ϵµν is an arbitrary polarization tensor depending on the wave vector kµ, and the exponent

contains the Lorentz invariant phase k · x = kµx
µ = ηµνk

µxν = −k0x0 + k⃗ · x⃗. The notation
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c.c. stands for complex conjugation, and makes the solution real. Plugging this ansatz into the
equations (157), one finds a solution if

kµkµ = 0 , kµϵµν(k) =
1

2
kνϵ

σ
σ . (159)

Thus, only 6 polarizations ϵµν(k) are possible. However, 4 of these polarizations, the ones with
ϵµν(k) ∼ kµϵν(k) + kνϵµ(k) for some ϵµ(k) are not physical, and can be removed by gauge
transformations. The latter have the form in (141), but with ξµ of the form

ξµ(x) ∼ ϵµ(k)e
ik·x (160)

which satisfies □ξµ(x) = 0, and thus does not ruin the harmonic gauge condition (141). The
gauge transformation becomes

δhµν = ∂µξν + ∂νξµ ∼ i(kµϵν(k) + kµϵν(k)) e
ik·x (161)

and shows that these types of polarizations are not physical, and can be removed by an appro-
priate gauge transformations. Thus, only two physical polarizations remain.

Let us exemplify this again by considering the motion along the z axis. We can take

kµ = (k0, k⃗) = (ω, 0, 0, ω) (162)

which solves kµkµ = 0 and gives the phase eik·x = eiω(z−t). The two expected polarizations can
be taken as (using the previous em polarizations)

ϵ⊕µν = ϵ1µϵ
1
ν − ϵ2µϵ

2
ν

ϵ⊗µν = ϵ1µϵ
2
ν + ϵ2µϵ

1
ν

(163)

which indeed satisfy
kµϵiµν = 0 , ϵiµν ̸= α(kµϵν + kνϵµ) (164)

for i = (⊕,⊗). Considering for example the solution with ϵ⊕µν , plugging it into (158), and
multiplying with an arbitrary amplitude h0 one finds

hµν(z − t) = h0 cos(ωz − ωt) ϵ⊕µν (165)

which inserted into the linearized metric gµν(x) give the line element

ds2 = (ηµµ + hµν(z − t))dxµdxν

= −dt2 + (1 + h11(z − t))dx2 + (1− h11(z − t))dy2 + dz2
(166)

which is interpretable as deforming periodically invariant lengths as in the figure 1 (from [2]).

Figure 1: Polarization ϵ⊕µν

The polarization ϵ⊗µν , does much of the same, but rotated by 45 degrees, see fig. 2
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Figure 2: Polarization ϵ⊗µν

9 The Schwarzschild solution

Finding exact solutions of the Einstein’s field equations is very difficult. One strategy is to use
conjectured symmetries of possible solutions, and use these symmetries to restrict the functional
form of the metric that is expected to solve the equations. This simplifies Einstein’s equations,
which then become more tractable and hopefully solvable.

This strategy is the one adopted for finding the Schwarzschild solution. The Schwarzschild
metric is obtained by asking for a static and isotropic solution of the Einstein equations in
vacuum, a situation that is realized outside a source that is supposed to be spherical symmetric
and static. To implement the required symmetries, time translation and rotational invariance,
one assumes the existence of coordinates xµ = (t, x⃗) such that the metric takes the form

ds2 = −F (r) dt2 + 2E(r) dt x⃗ · d⃗x+D(r) (x⃗ · dx⃗)2 + C(r) dx⃗ · dx⃗ (167)

where r =
√
x⃗ · x⃗. This is the most general ansatz consistent with the symmetries. The form

of the metric can be further simplified by making changes of coordinates. First of all, one may
pass to spherical coordinates (r, θ, ϕ) for x⃗, and using x⃗ · d⃗x = rdr one rewrites

ds2 = −F (r) dt2 + 2E(r)r dtdr +D(r)r2dr2 + C(r) [dr2 + r2dθ2 + r2 sin2 θ dϕ2]. (168)

Then, one may redefine the time by

t→ t′ = t+ Φ(r) (169)

so that

dt′ = dt+
dΦ(r)

dr
dr (170)

and the first two terms inside ds2 become

ds2 = −F (r)
(
dt′ − dΦ(r)

dr
dr
)2

+ 2E(r)r
(
dt′ − dΦ(r)

dr
dr
)
dr + . . . (171)

that rearranges to

ds2 = −F (r) dt′2+2
[
rE(r)+F (r)

dΦ(r)

dr

]
dt′dr−

[
F (r)

(dΦ(r)
dr

)2

+2rE(r)
dΦ(r)

dr

]
dr2+. . . (172)

Now one can fix the function Φ(r) to satisfy

dΦ(r)

dr
= −rE(r)

F (r)
(173)

so that the mixed term dt′dr vanishes, and the remaining part takes the form

ds2 = −F (r) dt′2 +G(r)dr2 + C(r) [dr2 + r2dθ2 + r2 sin2 θ dϕ2] (174)
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where

G(r) = r2
(
D(r) +

E2(r)

F (r)

)
. (175)

Now one could redefine the radius r → r′ by setting

r′ 2 = C(r)r2 (176)

so that one gets the so-called standard form of the metric

ds2 = −B(r′) dt′ 2 + A(r′)dr′ 2 + r′ 2(dθ2 + sin2 θ dϕ2) (177)

with
B(r′) = F (r)

A(r′) =
(
1 +

G(r)

C(r)

)(
1 +

r

2C(r)

dC(r)

dr

)−2

.
(178)

Dropping the primes one finds the static and isotropic metric in the standard form

ds2 = −B(r) dt2 + A(r)dr2 + r2(dθ2 + sin2 θ dϕ2) . (179)

It is put into Einstein’s equations, which are solved to produce the Schwarzschild solution

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2) . (180)

The same solution is obtained by relaxing the hypothesis of time invariance (staticity). A
more general ansatz for the solution still lead to the same Schwarzschild metric. This is captured
by Birkhoff’s theorem, that states that any spherically symmetric solution of the vacuum field
equations must be static and asymptotically flat. This theorem guarantees that the assumption
of staticity may be dropped, and still the exterior solution for the spacetime metric outside of
a spherical, nonrotating, gravitating body must be given by the Schwarzschild metric.

10 Black holes

The Schwarzschild solution indicates the existence of an event horizon and leads to the concept
of a black hole. The recommended treatment is the one presented in [2], see chapter 8.
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