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1 Brief introduction to path integrals

Quantization can be introduced in two equivalent ways:
- operator formalism (canonical quantization, Hilbert space, linear operators, etc ..)
- path integrals (functional integrals).
Path integrals have been introduced in quantum mechanics by Feynman in 1948, but until
about 1970 they did not meet with much success, and the operatorial methods of canonical
quantization were still the most widespread. In 1970 the success of gauge theories in the
development of the Standard Model of particle physics gave a strong impulse to path integral
methods. In fact, quantization of gauge theories is much more clear and elegant if performed
with path integrals. Furthermore, path integrals indicate a way of relating a quantum field
theory in D spacetime dimensions (D − 1 spaces and 1 time) to the statistical mechanics of a
system in D space dimensions. This link has given rise to a way of thinking and defining field
theories using statistical mechanics and renormalization group ideas introduced by Wilson and
others (lattice theories). Nowadays, it is convenient to master both methods, as according to
the problem at hand one may find one formalism more convenient then the other, even though
they are supposed to be equivalent.

To introduce path integrals let us follow Feynman and consider the two-slit experiment for
the electron. The standard treatment used to explain the behaviour of an electron which passes
through the two slits of a barrier and creates a figure of interference on a screen employs the
wave nature of the electron together with the Huygens principle for calculating the interference
pattern from the elementary waves that originate from the slits.

Feynman proposes an alternative description. He suggests to keep thinking of the electron as
to a particle that however can accomplish both trajectories, each one with a certain “amplitude”.
The total amplitude Atot is defined as the sum of the single amplitudes, and its square is related
to the probability that the electron is revealed at a given point of the screen. Moreover, the
elementary amplitude for each possible trajectory is related in a simple way to the classical
action evaluated on the trajectory itself: Feynman, inspired by previous considerations of
Dirac, associates to each trajectory an amplitude of unit norm (so that all trajectories “weigh”
democratically the same way) and with phase equal to the value of the action S in unit of ~.
In formulas:

Atot = A(c1) + A(c2) + ...+ A(cn)

A(cn) = e
i
~S(cn)

P (probability) ∼ |Atot|2 (1)
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i.e.
Atot =

∑
n

e
i
~S(cn) . (2)

An important part of this proposal is the identification of the phase of each elementary ampli-
tude with the action of the system. Let us make a rough test of this proposal. Recall that the
action of a free particle is given by the time integral of its kinetic energy

S[q] =

∫ T

0

dt
1

2
mq̇2 . (3)

We simplify the problem by assuming that the velocity is constant along the two trajectories.

D

D

d

R (rivelatore)

S
(sorgente)

Using the quantities shown in the figure we estimate (considering d� D)

S(c1) =
m

2

D2

T 2
T =

m

2

D2

T
(4)

S(c2) =
m

2

(D + d)2

T
=
m

2

D2

T
+
mDd

T
+O(d2) (5)

= S(c1) + pd+O(d2) (6)

where p = mD
T

is the momentum of the electron. Therefore

Atot = A(c1) + A(c2) = e
i
~S(c1) + e

i
~S(c2) = A(c1)

(
1 + e

i
~ [S(c2)−S(c1)]

)
= A(c1)

(
1 + e

i
~pd+O(d2)

)
. (7)

We see that the maximum probability to reveal the electron on the screen is when

e
i
~pd = 1 (8)

and thus
pd

~
= 2πn (n integer) → p

h
d = n (n integer). (9)

One can interpret this condition as defining a wavelength λ = h
p
, so that when d contains an

integer number of times such wavelengths there is constructive interference. The de Broglie
relation is obtained by this rudimentary “path integral”, and suggests that it contains the
essential elements of quantum mechanics. The number of slits can be increased, as well as
the number of intermediate screens, to have the particle performing all possible paths from
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the initial point to the final point of observation, thus creating a path integral for the total
amplitude.

The action is used in an essential way

S[q] =

∫ tf

ti

dt L(q, q̇) . (10)

The classic path is the one that minimizes the action

δS = 0 ⇒ ∂L

∂q
− d

dt

∂L

∂q̇
= 0 . (11)

In quantum mechanics, the transition amplitude is obtained by using the action S[q] for any
possible path

A =
∑
n

e
i
~S(cn) ≡

∫
Dq e

i
~S[q] . (12)

The final notation introduced here is that of the path integral or functional integral: S[q] is
a functional, i.e. a function of the functions q(t), that indicate the possible “paths” of the
system, and the symbol

∫
Dq indicates the formal integration over the space of paths {q(t)}.

Various mathematical subtleties on how to define exactly the path integration are still open,
nevertheless path integrals have become one of the main tools to study quantum systems.

In this formulation the classic limit is intuitive: macroscopic systems have large values of the
action S in units of ~, the quantum of action. Small variations of a path induce phase variations
i
~δS[q] much bigger with respect to π, and the amplitudes of nearby paths cancel by destructive
interference. This happens except at the point in which the action has a minimum, δS = 0,
which identifies the classic trajectory. Trajectories close to the classical one have amplitudes
that add up coherently since the phase does not vary: the functional integral is dominated by
the classic path!

2 Action principle

Let us briefly review the action principle, in mechanics and in field theories, considering the
case of a particle. The main purpose is to underline its relation to canonical quantization,
and to stress the relevance of symmetries. As anticipated, the action is essential for the path
integral quantization.

2.1 Lagrangian formalism

Consider a non-relativistic particle of mass m that moves in a single dimension with coordinate
q, and subject to a conservative force F = − ∂

∂q
V (q). Newton’s equations of motion reads

F = mq̈ (13)

and can be derived from an action principle. The action is a functional of the trajectory of
the particle q(t) (the dynamical variable of the system) and associates a real number to each
function q(t). In general, physical systems are described by an action of the type

S[q] =

∫ tf

ti

dt L(q, q̇) , L(q, q̇) =
m

2
q̇2 − V (q) (14)
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where L(q, q̇) is the lagrangian. The principle of least action states that: the classic trajectory
that joins two points of configuration space is the one that minimizes the action S.

To demonstrate this statement we study the condition for having a minimum. Varying the
path q(t) (with boundary conditions q(ti) = qi and q(tf ) = qf ) in a new function q(t) + δq(t),
where δq(t) is an arbitrary infinitesimal variation (with δq(ti) = δq(tf ) = 0), and imposing that
the action is minimized on the path q(t) one finds

0 = δS[q] = S[q + δq]− S[q]

=

∫ tf

ti

dt
[
mq̇δq̇ − ∂V (q)

∂q
δq
]

= mq̇δq
∣∣∣tf
ti
−
∫ tf

ti

dt
[
mq̈ +

∂V (q)

∂q

]
δq

= −
∫ tf

ti

dt
[
mq̈ +

∂V (q)

∂q

]
δq .

Since the variations δq(t) are arbitrary functions, the minimum is reached when the function
q(t) satisfies the classical equations of motion

mq̈ +
∂V (q)

∂q
= 0 (15)

which reproduce (13). In general, one finds the Euler-Lagrange equations

0 = δS[q] = δ

∫ tf

ti

dt L(q, q̇) =

∫ tf

ti

dt
[∂L(q, q̇)

∂q̇
δq̇ +

∂L(q, q̇)

∂q
δq
]

=
∂L(q, q̇)

∂q̇
δq
∣∣∣tf
ti
−
∫ tf

ti

dt
[ d
dt

∂L(q, q̇)

∂q̇
− ∂L(q, q̇)

∂q

]
δq

= −
∫ tf

ti

dt
[ d
dt

∂L(q, q̇)

∂q̇
− ∂L(q, q̇)

∂q

]
δq

and thus
d

dt

∂L(q, q̇)

∂q̇
− ∂L(q, q̇)

∂q
= 0 . (16)

Observations:
1. The action has dimension [S] = [~] = [energy × time] = ML2/T .
2. The lagrangian equations of motion are typically of second order in time, therefore one
expects two “initial conditions” (or, more generally, boundary conditions), conveniently chosen
by fixing the position at the initial and final times.
3. The equations of motion can be written as the functional derivative of the action

δS[q]

δq(t)
= 0 , (17)

with the functional derivative defined by the variation

δS[q] =

∫
dt
δS[q]

δq(t)
δq(t) .

4. The equations of motion do not change if one adds a total derivative to the lagrangian L,
L→ L′ = L+ d

dt
Λ.
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5. The lagrangian formalism easily extends to systems with more than one degrees of freedom,
and with a little more attention to field theories (systems with an infinite number of degrees of
freedom).

To appreciate this last point, let us consider a set of dynamical fields φi(x) = φi(t, ~x), where
x indicates the spacetime point. By dynamics one means evolution over the time t. At fixed
t the dynamical fields φi(t, ~x) are indexed by i (which labels a discrete set of fields) and by
~x ∈ R3, that tells us that at every point of space there is a dynamical variable: there are
an infinite number of degrees of freedom. By discretizing the space, and considering a finite
volume, one can approximate a field theory by a mechanical model with a finite number of
degrees of freedom. Typically, when the latter are the true physical degrees of freedom (e.g.
in the atomic structure of matter) but very large in number, the continuum approximation is
very useful. The lagrangian L is often expressed as an integral of a lagrangian density L

L(t) =

∫
d3xL(φi, ∂µφi) (18)

and the action takes the form

S[φ] =

∫
dt L(t) =

∫
d4xL(φi, ∂µφi) . (19)

Imposing the extremality condition δS = 0 produces the Euler-Lagrange equations

∂µ
∂L

∂(∂µφi)
− ∂L
∂φi

= 0 . (20)

2.2 Hamiltonian formalism

The basic idea of the hamiltonian formalism is to have equations of motion that are first order
in time. To review it, we follow a simple example: a non-relativistic particle of coordinates qi

and configuration space lagrangian

L(q, q̇) =
m

2
q̇iq̇i − V (q) (21)

where indices are lowered with the metric δij (and are thus equivalent to upper indices in our
model, distinction of upper and lower indices is however useful in more general contexts). Tran-
sition to the hamiltonian formalism takes place as follows:
1) The dynamical variables are doubled by introducing conjugate momentum pi to each coor-
dinate qi

pi ≡
∂L

∂q̇i
= mq̇i . (22)

The set (qi, pi) constitutes the coordinates of phase space.
2) The hamiltonian H(q, p) is defined as the Legendre transform of the lagrangian L

H(qi, pi) ≡ piq̇
i − L(q, q̇) =

1

2m
pipi + V (q) . (23)
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It is a function on phase space.
3) The Poisson brackets are defined as follows. For any two functions A and B of phase space,
their Poisson brackets is defined by

{A,B} =
∂A

∂qi
∂B

∂pi
− ∂A

∂pi

∂B

∂qi
(24)

where we have used the summation convention for repeated indices. In particular,

{qi, pj} = δij , {qi, qj} = 0 , {pi, pj} = 0 . (25)

4) The hamiltonian equations of motions can be written as

q̇i = {qi, H} , ṗi = {pi, H} (26)

and are of first order in time. In our example they become

q̇i =
∂H

∂pi
=
pi

m
, ṗi = −∂H

∂qi
= −∂V

∂qi
(27)

and are evidently equivalent to the lagrangian equations mq̈i = − ∂V
∂qi

. The hamiltonian H

is interpreted as the generator of time translations, and moves the initial conditions (a point
in phase space) over time by an infinitesimal amount dt. The generator of these canonical
transformations is given by Hdt, and acts through the Poisson brackets (δq = {q,Hdt}, δp =
{p,Hdt}).

These equations can be obtained from an action. In phase space, the action takes the form

S[q, p] =

∫ tf

ti

dt
(
piq̇

i −H(q, p)
)

(28)

and minimizing it one finds

0 = δS =

∫ tf

ti

dt
(
δpiq̇

i + piδq̇
i − ∂H

∂pi
δpi −

∂H

∂qi
δqi
)

= piδq
i
∣∣∣tf
ti

+

∫ tf

ti

dt
[
δpi

(
q̇i − ∂H

∂pi

)
− δqi

(
ṗi +

∂H

∂qi

)]
from which one recognizes Hamilton’s equations of motion. Note that in this formulation one
needs 2n integration constants, which are given by specifying the coordinates qi at initial and
final times.

The hamiltonian structure is the starting point of canonical quantization:

za = (qi, pi) → ẑa = (q̂i, p̂i) such that [ẑa, ẑb] = i~{za, zb} . (29)

where the classical dynamical variables za are elevated to linear operators ẑa acting on a Hilbert
space. The vectors of the latter describe the possible quantum states of the system, whose
evolution is governed by the Schrödinger equation.

2.3 Examples

Let us now describe some actions worth quantizing: they describe the motion of a particle in a
scalar potential V (x), vector potential Ai(x), and tensor potential (metric) gij(x).
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2.3.1 Particle scalar potential

The motion of a particle in a flat euclidean space (with cartesian coordinates xi and metric
ds2 = δijdx

idxj = dxidxi = dxidxi) is described by the coordinates xi(t) of the particle. We
consider interactions given by a scalar potential V (x).

Lagrangian formalism

The lagrangian takes the form

L(x, ẋ) =
m

2
ẋiẋi − V (x) (30)

and varying the action S[x(t)] =
∫
dt L(x, ẋ) one finds the lagrangian equations of motion

mẍi = −∂V
∂xi

. (31)

Hamiltonian formalism

One defines the conjugate momanta

pi ≡
∂L

∂ẋi
= mẋi (32)

as independent variables, and construct the hamiltonian by the Legendre transform

H(x, p) = piẋ
i − L(x, ẋ) =

1

2m
pip

i + V (x) (33)

so that the equations of motion take the form

ẋi = {xi, H} =
pi

m

ṗi = {pi, H} = −∂V
∂xi

.

(34)

These equations are first order in time, and equivalent to the lagrangian ones in (31).
One may interpret phase space with coordinates (xi, pi) as the set of all possible initial

conditions of the system, and the hamiltonian as generating the dynamics by moving the initial
point in time through the Poisson brackets.

2.3.2 Particle in a vector potential (magnetic field)

Let us now consider a particle of mass m and charge q in interaction with a vector potential
Ai(x), that identifies a (time-independent) magnetic field Bi = εijk∂jAk (i.e. ~B = ~∇× ~A).

Lagrangian formalism

The correct lagrangian (that produces the Lorentz force) is given by

L(x, ẋ) =
m

2
ẋiẋi + qAi(x)ẋi . (35)

Varying the action S[x(t)] =
∫
dt L(x, ẋ) one finds the lagrangian equations of motion

mẍi = q(∂iAj − ∂jAi)ẋj (36)
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that are written in terms of the magnetic field as

mẍi = qεijkẋ
jBk (i.e. m~̈x = q ~̇x× ~B) . (37)

Note that the relation Bi = εijk∂jAk can be inverted by (∂iAj − ∂jAi) = εijkB
k. The notation

Fij = ∂iAj − ∂jAi = εijkB
k is often used.

Hamiltonian formalism

Calculating the conjugate momenta

pi ≡
∂L

∂ẋi
= mẋi + qAi(x) (38)

and the hamiltonian

H(x, p) = piẋ
i − L(x, ẋ) =

1

2m

(
pi − qAi(x)

)2
(39)

one finds the equations of motion in hamiltonian form

ẋi = {xi, H} =
1

m
(pi − qAi)

ṗi = {pi, H} =
q

m
(∂iAj)(p

j − qAj) .
(40)

These differential equations are first order in time, and equivalent to the lagrangian ones.
Note that at the hamiltonian level, the interaction is introduced by making the minimal

substitution pi → pi − qAi(x) in the free hamiltonian. Thus, it is useful to introduce the
definition of covariant momentum πi as

πi = pi − qAi(x)

which satisfies the Poisson bracket
{πi, πj} = qFij

where Fij = ∂iAj−∂jAi = εijkB
k is the magnetic field. Note that in quantization the covariant

momentum becomes proportional to the gauge covariant derivative. In terms of the covariant
moment the equations of motion take the form

ẋi = {xi, H} =
πi

m
π̇i = {πi, H} =

q

m
Fijπ

j . (41)

For simplicity, we have considered a static magnetic field, but the treatment can be extended
to a time dependent magnetic field, and more generally to a time dependent electromagnetic
field, which we leave as an exercize.

Gauge invariance

The same magnetic field can be obtained by different vector potentials, related by a gauge
transformation. Indeed, potentials related by

Ai(x) → A′i(x) = Ai(x) + ∂iΛ(x) , (42)
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where Λ(x) is an arbitrary function, identify the same magnetic field (B′i = Bi).
The equations of motion with the Lorentz force (37) depend only on the magnetic field,

and are therefore gauge invariant. This is visible also from the lagrangian: under a gauge
transformation the lagrangian changes by a total derivative which, as we know, does not modify
the equations of motion

L(x, ẋ;A′) = L(x, ẋ;A) + q ẋi∂iΛ = L(x, ẋ;A) +
d(qΛ)

dt

where the notation L(x, ẋ;A) indicates the lagrangian (35) depending on the potential Ai.
In Hamiltonian formalism, a gauge transformation acts on conjugated momenta

pi → p′i = pi + q∂iΛ

but leaves unchanged the covariant moments πi. Of course, by covariance here one refers to
the covariance under gauge transformations.

2.3.3 Particle in a tensor potential (curved space): the nonlinear sigma model

Let us finally consider the motion of a particle in a curved space with metric

ds2 = gij(x)dxidxj . (43)

Lagrangian formalism

The lagrangian contains only a kinetic term

L(x, ẋ) =
m

2
gij(x)ẋiẋj (44)

and varying the action S[x(t)] =
∫
dt L(x, ẋ) one finds

ẍi + Γijkẋ
jẋk = 0 (45)

where the Christoffel symbols (the components of the metric connection), defined by

Γijk =
1

2
gim(∂jgkm + ∂kgjm − ∂mgjk) (46)

where gij is the inverse of the metric (gijgjk = δik), come out naturally from the variational

principle. These are the geodesic equation in a curved space (often written as Dẋi

dt
= 0).

Hamiltonian formalism

Defining the conjugate momenta

pi ≡
∂L

∂ẋi
= mgij(x)ẋj (47)

and the hamiltonian

H(x, p) = piẋ
i − L(x, ẋ) =

1

2m
gij(x)pipj (48)
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one finds the equations of motion in phase space

ẋi = {xi, H} =
1

m
gijpj

ṗi = {pi, H} = − 1

2m
(∂ig

kl)pkpl .

(49)

Invariance under an arbitrary change of coordinates

The motion of the particle should not depend on the coordinates chosen. By changing
coordinates, the metric tensor is transformed in such a way to keep unchanged the length
element ds2 = gij(x)dxidxj = g′ij(x

′)dx′idx′j. Thus, under a change (diffeomorphism)

xi → x′i = x′i(x) (50)

the metric must change by

gij(x) → g′ij(x
′) = gkl(x)

∂xk

∂x′i
∂xl

∂x′j
. (51)

For an infinitesimal change of coordinates

xi → x′i = xi − ξi(x) (i.e. δxi ≡ xi
′ − xi = −ξi) (52)

where ξi(x) is an infinitesimal vector field, one finds for the metric, using (50) and (51),

δgij ≡ g′ij(x)− gij(x) = ξk∂kgij +
∂ξk

∂xi
gkj +

∂ξk

∂xj
gik (53)

where we have calculated the difference between the new function g′ij and the old function gij
evaluated at the same point x (there is a so-called transport term from the point x′ to the
point x proportional to the derivative of the metric). One may check that that under these
infinitesimal transformations the lagrangian remains invariant

δL(x, ẋ) = mgijδẋ
iẋj +

m

2
(δxk∂kgij)ẋ

iẋj +
m

2
δgijẋ

iẋj = 0 . (54)

This symmetry is often called “background” symmetry because also the functions gij(x) are
transformed on top of the the dynamical variables xi(t).

3 Symmetries and Noether’s theorem

The study of the symmetries of a physical system is very useful for identifying the equations of
motion governing the system and for solving them. We define the concept of symmetry by:
A symmetry is a transformation of the dynamical variables q(t), induced possibly by a transfor-
mation of the time t,

t −→ t′ = f(t)

q(t) −→ q′(t′) = F (q(t), t)
(55)
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that leaves the equations of motion invariant in form.
Since the equations of motion are invariant in form, they admit the same kind of solutions,
and one cannot determine if the motion takes place in the “old frame of reference” or the “new
frame of reference”. These reference frames are to be treated on the same footing, without one
of them being identified as privileged. A check to test if a transformation is a symmetry makes
use of the action. If the action is invariant under the transformation (55), up to boundary terms
(which emerge as integrals of total derivatives and do not modify the equations of motion)

S[q′] = S[q] + boundary terms (56)

then the transformation is a symmetry: the equations obtained from the least action principle
must be of the same form, being obtainable from identical actions.

A physical system can present different types of symmetry: discrete symmetries, continuous
symmetries (associated with a Lie group), local symmetries (called also gauge symmetries).
An even more general concept is that of “background symmetry”, described by generalized
transformations that modify also the parameters of the theory (e.g. the coupling constants or
those contained in external potentials). They are not true symmetries in the technical sense
defined above, but relate solutions of a given theory with certain parameters to the solutions
of another theory with different parameters.

For Lie symmetries, symmetries that depend continuously on some parameters, one can
prove Noether’s theorem. It states that:
For each continuous parameter of the symmetry group there exists a conserved charge (in field
theories this conservation is expressed by an equation of continuity).

A proof is the following one. A transformation of symmetry which depends on a parameter
α can be presented in a general way as

t −→ t′ = f(t, α)

q(t) −→ q′(t′) = F (q(t), t, α)
(57)

where by definition the identity transformation is achieved for α = 0. Infinitesimal transforma-
tions (with parameter α� 1) they can be written as

δαq(t) ≡ q′(t)− q(t) = αG(q(t), t) (58)

with an appropriate function G obtainable from the F and f in (57). To prove that there is a
conserved quantity associated with the symmetry, we extend the symmetry transformation to a
more general transformation with parameter α(t), no longer constant but depending arbitrarily
on the time t (i.e. an arbitrary function of time)

δα(t)q(t) = α(t)G(q(t), t) . (59)

Generically, this transformation will not be a symmetry, but one can certainly state that the
action transforms as

δα(t)S[q] =

∫
dt α̇(t)Q(q(t), t) (60)

up to boundary terms (integrals of total derivatives). In fact, if we take the case of α constant
the action must be invariant by hypothesis (as we have a symmetry). So, for an arbitrary
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function α(t), the variation cannot depend directly on α, but only on its derivatives. Now the
quantity Q that appears in (60) is conserved. To show that, one uses the equations of motion in
the form of the “least action principle”, which make the variation vanish for any transformation
and in particular for the transformations with local parameter in (59)

0 = δα(t)S[q]

∣∣∣∣
q0

=

∫
dt α̇(t)Q

∣∣∣∣
q0

= −
∫
dt α(t)Q̇

∣∣∣∣
q0

=⇒ Q̇(q0(t), t) = 0

where we have integrated by parts and used the arbitrariness of the function α(t) to deduce
conservation. Note that we must evaluate the variation of the action at the point of minimum,
indicated by q0, which solves the Euler-Lagrange equations. The conserved charge Q is be eval-
uated on the solution of the equations of motion and is conserved. This type of Lie symmetries
are called rigid symmetries or global symmetries. To each parameter of the Lie group there is
an associated conserved charge Q.

Those types of Lie symmetries where the parameter is an arbitrary function of time are
called local symmetries or gauge symmetries. The previous method does not produce any non-
trivial conserved quantity, because the variation of the action is always zero, for any local
parameter and without using the equations of motion. Local symmetries tell us that the
dynamical variables are redundant: with a gauge transformation one can modify arbitrarily
the time evolution of certain combinations of the dynamical variables, combinations whose
evolution is evidently not fixed by the equations of motion.

These two types of symmetry are exemplified in the following examples: the non-relativistic
particle and the relativistic particle.

3.1 Non-relativistic particle and symmetries (the Galilean group)

Let us consider a non-relativistic free particle. We wish to study the invariance under transfor-
mations generated by the Galilean group, obtaining the conserved charges that are guaranteed
to exist by Noether’s theorem.

As dynamical variables we use the cartesian coordinates of the particle position xi(t) ∈ R3

The action is given by the time integral of the lagrangian, which for a free particle coincides
with the kinetic energy

S[x] =

∫
dt

m

2
ẋiẋi . (61)

The equations of motion are obtained by minimizing it

δS[x]

δxi(t)
≡ −mẍi = 0 . (62)

We now study the infinitesimal symmetry transformations that make up the Galilean group
and obtain the corresponding conserved charges.

Space translations: A space translation acts by

δxi(t) ≡ x′
i
(t)− xi(t) = ai (63)

with ai a constant infinitesimal vector. Under this transformation the action is invariant

δS[x] = 0 (64)
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and thus the transformation (63) is a symmetry. We now use Noether’s method to find the
conserved charges. We extend the symmetry in (63) to a more general transformation depending
on a time dependent vector ai(t)

δxi(t) = ai(t) . (65)

The action is no more invariant, and a quick calculation gives

δS[x] =

∫
dt mẋi︸︷︷︸

pi

ȧi . (66)

The term multiplying ȧi is the conserved charge: the momentum pi. To prove conservation we
use the equations of motion, which imply that δS = 0 for any variation, and in particular for
a variation of the form (65). Let us indicate by xi(t) the solution of the equations of motion:
integrating by parts and using the arbitrariness of the functions ai(t) we deduce that pi = mẋi

is conserved

0 = δS[xi(t)] =

∫
dt pi(t)ȧi(t) = −

∫
dt ṗi(t)ai(t) =⇒ ṗi(t) = 0 . (67)

Thus, the momentum pi = mẋi is conserved in the evolution of the system as consequence of
translational invariance in space.
Time translation: Time translation is also an invariance of the system. If we shift time by an
infinitesimal quantity ε

t→ t′ = t− ε (68)

and require that the functions xi(t) are scalar functions 1

xi(t) → x′
i
(t′) = xi(t) (69)

then the action is invariant. We express the infinitesimal transformation by δxi(t) ≡ x′i(t) −
xi(t), with the functions evaluated at the same time t,

δxi(t) = x′
i
(t)− xi(t) = x′

i
(t)− xi(t) + x′

i
(t′)− x′i(t′)

= x′
i
(t)− x′i(t′) + x′

i
(t′)− xi(t)︸ ︷︷ ︸

=0

= x′
i
(t)− x′i(t+ ε) = ε ẋ′i(t) = ε ẋi(t) (70)

which is valid up to ε2 terms that are neglected. Using directly an arbitrary function ε(t)

δxi(t) = ε(t)ẋi(t) (71)

we compute

δS[x] =

∫
dt mẋi∂t(εẋ

i) =

∫
dt
[
∂t

(εm
2
ẋiẋi

)
+ ε̇

m

2
ẋiẋi

]
=

∫
dt ε̇

(m
2
ẋiẋi

)
︸ ︷︷ ︸

E

(72)

where total derivatives are dropped, as usual. From this result we deduce two things:
(i) if ε is constant ε̇ = 0 and δS[x] = 0, so the corresponding transformation is a symmetry; (ii)
using the equations of motion (which make δS[x]|x(t)=xcl(t) = 0 for any variation) and integrating

1The position of the particle does not change, it only changes the way to measure time.
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by parts we deduce that Ė = 0, i.e. the kinetic energy E = m
2
ẋiẋi is conserved. This is the

consequence of time translation invariance.
Space rotations: For spatial rotations, the coordinates are transformed as

δxi(t) = εijkωjxk(t) (73)

where the vector ωi describes an infinitesimal rotation. Considering directly ωi as arbitrary
functions of time we obtain

δS[x] =

∫
dt ω̇i εijkxjmẋk︸ ︷︷ ︸

(~r×~p)i≡Li

. (74)

Again, there is symmetry for ωi constant. The corresponding conserved charges are the three
components of the angular momentum Li = εijkxjpk.
Galilean transformations: We call proper galilean transformations those transformations that
bring us to a new inertial frame moving with relative constant velocity vi. The transformation
on the dynamical variables is therefore given by

δxi(t) = vit (75)

and proceeding as before, extending the parameters of the transformation to arbitrary functions
of time, we calculate up to boundary terms

δS[x] =

∫
dt v̇i

(
mẋit−mxi

)
︸ ︷︷ ︸

Gi

(76)

from which we deduce that there is a symmetry for vi constant, and that the vector Gi =
mẋit−mxi is conserved, as verified explicitly.

We have seen how the invariance of the non-relativistic free particle under the transforma-
tions of the Galilean group, a 10-parameter Lie group, produces 10 conserved quantities.

3.2 Relativistic particle

Let us now study the action for a relativistic particle. By definition it must be consistent with
Lorentz invariance and, more generally, with transformations of the Poincaré group. We shall
study four equivalent descriptions, focusing on the role of local symmetries (gauge symmetries).
As we shall see, the latter arises by requiring that the Lorentz invariance (a global symmetry)
be manifest.

(I) Consider the particle in the inertial frame with coordinates xµ = (x0, xi) = (t, xi). For
simplicity we use c = 1. We consider the position xi(t) at time t as the dynamical variables.
Imposing the invariance of the action under Lorentz transformations guarantees relativistic
invariance. This request is implemented using the proper time T0, which infinitesimally is given
by

dT0 =
√
−ds2 =

√
−dxµdxµ =

√
dt2 − dxidxi = dt

√
1− ẋiẋi . (77)

From special relativity we know that the proper time is a relativistic invariant, as it measures
the invariant length of the worldline. Thus, for a particle of mass m an action proportional to
the proper time

SI [x
i(t)] = −m

∫
dT0 = −m

∫
dt
√

1− ẋi(t)ẋi(t) (78)
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is automatically invariant under Lorentz (and Poincarè) transformations. Moreover, it repro-
duces the action of the non-relativistic particle in the non-relativistic limit (ẋi)2 � 1. The
equations of motion are obtained from the principle of least action

δSI [x
i] = 0 =⇒ d

dt

(
mẋi√
1− ~̇x~̇x

)
= 0 . (79)

The rigid symmetries are those generated by the Poincaré group, which must be present by
construction, but the way these symmetries are realized in not manifest (i.e. one cannot use
the tensor formalism to verify the Lorentz invariance on the dynamical variables xi(t), as time
and space are treated differently.) There are no gauge symmetries, and the three dynamical
variables are all “physical”: the system has three degrees of freedom. Note also the geometric
interpretation: the action is proportional to the length of the worldline traveled by the particle,
a time-like length proportional to the proper time (indeed they measure the same thing).

(II) The previous formulation is correct, but it would be preferable to treat the space
coordinates xi and the time coordinate x0 ≡ t in a more symmetrical way to keep relativistic
invariance more easily under control (i.e. manifest). One could use the four dynamical variables
xµ, which form a four-vector, but one of them (or more generally one combination of them)
will have to be redundant so to guarantee equivalence with the previous action: this is possible
if there are local symmetries (gauge symmetries). This is achieved in the following way: we
indicate by xµ(τ) the dynamical variables which describe the worldline traveled by the particle in
terms of an arbitrary parameter τ . The action is geometrically the same as before, proportional
to the proper time, but now it takes the form of a functional of four variables

SII [x
µ(τ)] = −m

∫
dτ
√
−ẋµẋµ (80)

where we now define ẋµ ≡ d
dτ
xµ. The equations of motion read

δSII [x
µ] = 0 =⇒ d

dτ

(
mẋµ√
−ẋν ẋν

)
= 0 . (81)

The rigid symmetries are manifestly those of the Poincarè group

xµ(τ)→ x′
µ
(τ) = Λµ

νx
ν(τ) + aµ. (82)

At the infinitesimal level they read

δxµ(τ) = ωµνx
ν(τ) + aµ (83)

where δxµ(τ) = x′µ(τ) − xµ(τ) and Λµ
ν = δµν + ωµν (both ωµν and aµ are to be consid-

ered as infinitesimal parameters). This symmetry ensures that the model is relativistic. The
corresponding conserved charges can be obtained by applying Noether’s theorem.

In addition there is a local symmetry (gauge symmetry)

δxµ = ξ(τ)ẋµ(τ) (84)

where the infinitesimal parameter ξ(τ) depends arbitrarily on the time parameter τ . We can
interpret it as a local time translation (recall the transformation rule (70)). Under this trans-
formation the action is invariant (up to boundary terms)

δSII [x
µ] =

∫
dτ

d

dτ

(
ξLII

)
∼ 0 (85)
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where LII is the lagrangian in SII . This local symmetry corresponds geometrically to a repa-
rameterization of the worldline

τ −→ τ ′ = f(τ)

xµ(τ) −→ x′
µ
(τ ′) = xµ(τ)

(86)

which for infinitesimal transformations τ ′ = τ − ξ(τ) reduces to (84) (mathematicians call
this symmetry a diffeomorphism of the worldline). This gauge symmetry is needed to prove
equivalence with formulation I. Equivalence is obtained by operating a gauge transformation
(a reparameterization of the worldline) to fix one of the dynamical variables by requiring a
gauge-fixing choice. One can impose the gauge-fixing condition

x0(τ) = t(τ) = τ (87)

so that the variable x0(τ) is not anymore dynamical: its time evolution is fixed by the gauge
condition, and corresponds to use x0 as the parameter to label points of the particle worldline.
This reproduces the action SI .

(III) A third formulation is obtained by introducing a new dynamical variable, a gauge
variable (also called “gauge field”). By that one means a variable whose gauge transformation
contains the derivative of the parameter of the local symmetry (the gauge parameter). In
this specific case, the so-called einbein e(τ) is used as gauge field (from the german “einbein”
meaning “one leg”). Geometrically the einbein defines an intrisic metric on the wordline by the
formula ds2 = e2(τ)dτdτ . The action is given by

SIII [x
µ(τ), e(τ)] =

∫
dτ

1

2
(e−1ẋµẋµ − em2) (88)

where it is assumed that the einbein e is non-vanishing, and therefore invertible. The local
symmetry takes the form

δxµ = ξẋµ

δe =
d

dτ
(ξe) (89)

and leads to δSIII =
∫
dτ d

dτ
(ξLIII) ∼ 0. Note that the transformation rule of e contains the

derivative of the local parameter ξ. The global symmetries are again given by transformations
of the Poincarè group

δxµ(τ) = ωµνx
ν(τ) + aµ

δe(τ) = 0 .

The equations of motion are

δS[x, e]

δe(τ)
= 0 −→ e−2ẋµẋµ +m2 = 0 (90)

δS[x, e]

δxµ(τ)
= 0 −→ d

dτ
(e−1ẋµ) = 0 . (91)

To show equivalence with formulation II, we solve the algebraic equation (90)

e = ± 1

m

√
−ẋµẋµ . (92)
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Substituting this relation back in SIII one finds

SIII

[
xµ(τ), e(τ) = ± 1

m

√
−ẋµẋµ

]
= ∓m

∫
dτ
√
−ẋµẋµ . (93)

Choosing the solution with e > 0 brings back to formulation II. The other solution may be
interpreted as a sign of the existence of antiparticles. Furthermore, action III is superior to
the previous ones, as it includes the case of massless particles, obtained by setting m = 0 in
the action.

(III’) Gauge invariance can be used to fix a condition (gauge-fixing condition). Choosing
to set a gauge-fixing condition on the einbein, for example with the choice e = 1 (it is possible
ignoring topological complications, which we will do). Then the action (88) simplifies to

SIII′ [x
µ(τ)] =

∫
dτ

1

2
ẋµẋµ . (94)

However, one must remember the equations of motion of e, which in the gauge become ẋµẋµ +
m2 = 0. This simplified action with associated constraint is equivalent to the original gauge
invariant action: all the information on the dynamics is contained in the set

action SIII′ [x
µ(τ)] =

∫
dτ

1

2
ẋµẋµ

constraint ẋµẋµ +m2 = 0 . (95)

This is perhaps the simplest formulation possible for the dynamics of a relativistic particle.
(IV) At last, we pass to a fourth formulation, equivalent to the previous ones and useful for

canonical quantization. It is the hamiltonian formulation. Starting from SIII , introducing the
conjugate momenta pµ = e−1ẋµ and the corresponding hamiltonian HE = e

2
(pµpµ + m2) ≡ eC

(where C ≡ 1
2
(pµpµ +m2)), one finds the action in phase space

SIV [xµ(τ), pµ(τ), e(τ)] =

∫
dτ
(
pµẋ

µ − e

2
(pµpµ +m2)

)
(96)

where xµ are the coordinates in spacetime, pµ their conjugate momenta, and e the einbein.
All of them must be treated as independent dynamical variables. The gauge symmetry can be
written in the form

δxµ = ζpµ

δpµ = 0

δe = ζ̇

(97)

and one verifies that δSIV =
∫
dτ d

dτ
[ ζ
2
(p2 − m2)] ∼ 0. Eliminating pµ by their algebraic

equations of motion

δSIV
δpµ

= ẋµ − epµ = 0 =⇒ pµ = e−1ẋµ (98)

allows to recover the formulation III (also the form of the gauge symmetry is recovered by
relating ζ = eξ).
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Note the structure of the action SIV . It depends on the phase space coordinates (xµ, pµ)
and on the gauge field e which acts as a Lagrange multiplier. Its equations of motion impose
a constraint in phase space (constrained hamiltonian mechanics)

C ≡ 1

2
(pµpµ +m2) = 0 (99)

as depicted in figure 1.

C ≈ 0

Figure 1: Phase space with the constraint surface identified by C ≈ 0.

This constraint acts also as the generator of gauge transformations in phase space via
Poisson brackets: using the local arbitrary infinitesimal parameter ζ(τ) these transformations
are generated by

δxµ = {xµ, ζC} = ζpµ

δpµ = {pµ, ζC} = 0
(100)

that reproduce the ones in (97). This is a general feature of the so-called constrained hamil-
tonian systems with first class constraints (those constraints that generate gauge symmetries).
Points related by gauge transformations form an orbit, and the set of all orbits fill the constraint
surface.

C ≈ 0

Figure 2: Constraint surface with the gauge orbits generated by gauge transformations.

Quantization

To quantize the relativistic particle, it is convenient to use canonical quantization and choose
the formulation IV . Quantization is obtained by interpreting the dynamical classical variables
(xµ, pµ) as linear operators (x̂µ, p̂µ) acting on a Hilbert space H. The operators are fixed by
their commutation relations, required to be i~ times the classical Poisson bracket

{xµ, pν}PP
= δµν −→ [x̂µ, p̂ν ] = i~δµν . (101)

An arbitrary vector of the Hilbert space |φ〉 ∈ H does not generally describe a physical state,
because it is necessary to remember the equation of motion of the gauge field, pµpµ +m2 = 0.
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The corresponding constraint function C is then elevated to an operator Ĉ, which is then used
as a constraint on the Hilbert space to select the physical states of the system

Ĉ|φ〉 = 0 → (p̂µp̂µ +m2)|φ〉 = 0 . (102)

The quantum hamiltonian Ĥ is proportional to the constraint Ĉ = 1
2
(p̂2+m2), and thus vanishes

on physical states. The corresponding Schroedinger equation on physical states becomes

i~
∂

∂τ
|φ〉 = Ĥ|φ〉 = 0 (103)

and says that the physical states |φ〉 are independent of τ .
The corresponding wave function φ(x) = 〈xµ|φ〉 is therefore independent of the parameter

τ and satisfies (102), which we recognize as the Klein-Gordon equation(
− ~2∂µ∂µ +m2

)
φ(x) = 0 . (104)

Thus, we conclude that the Klein-Gordon equation is obtained by quantizing canonically
the relativistic particle. We refer to this as to the “first quantization” of the relativistic particle.
Reintroducing the speed of light c with dimensional considerations, the Klein-Gordon equation
is written in the usual way (

∂µ∂
µ − µ2

)
φ(x) = 0 (105)

where µ = mc
~ is the inverse of the (reduced) Compton wavelength λ = ~

mc
associated with the

relativistic particle.

4 Summary

We have seen that the free non-relativistic particle is fixed by the action

S[xi] =

∫
dt

m

2
δijẋ

iẋj (106)

which enjoys the global symmetries of the galilean group. It can be coupled to the external
potentials gij, Ai, V to have the particle in a curved space, interacting with a magnetic field
and a scalar potential

S[xi] =

∫
dt
(m

2
gij(x)ẋiẋj + qAi(x)ẋi − V (x)

)
. (107)

Similarly, the relativistic free particle is described by an action with gauge invariance, which
in formulation III takes the form

S[xµ, e] =

∫
dτ

1

2
(e−1ẋµẋµ − em2) . (108)

It has a gauge symmetry and describes three physical degrees of freedom (the position of the rel-
ativistic particle in space). It can also be coupled to a spacetime metric gµν , an electromagnetic
field Aµ, and a scalar potential V by

S[xµ, e] =

∫
dτ
(1

2
e−1gµν(x)ẋµẋν + qAµ(x)ẋµ − e(1

2
m2 + V (x))

)
. (109)

The similiarities of the actions (109) and (107) is of great help in the study of the relativistic
model and its quantization.
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