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Quantum mechanics can be formulated in two equivalent ways: (i) canonical quantization,
also known as operatorial quantization, which is based on linear operators acting on a Hilbert
space of physical states, (ii) path integrals, based on integration over a space of functions. The
former was the first one to be developed, through the work of Heisenberg, Schrödinger, Dirac
and others. The latter was introduced later on by Feynman, who extended previous suggestions
by Dirac. Nowadays it is useful to know both formulations, as depending on the problem at
hand, one may find technical advantages in using one over the other. In worldline approaches
one often uses the operatorial formulation to define the problem, and path integrals to calculate
the answer.

The operatorial formulation of quantum mechanics is the one usually presented in introduc-
tory courses on quantum mechanics. Path integrals are introduced later on, when approaching
the problem of quantizing gauge fields. Indeed path integrals have become quite popular since
the advent of gauge theories, because the quantization of the latter is much more intuitive and
transparent in that context.

In these notes we introduce path integrals for the quantization of point particles, as opposed
to the quantization of field theories. The former contains a finite number of degrees of freedom,
the latter deals with an infinite number of degrees of freedom. We assume only elementary
notions of quantum mechanics in its operatorial form, and start developing path integrals from
the beginning. In particular, we discuss path integrals for a non relativistic point particle, which
contains already the essence of path integrals, and then extend them to fermionic systems.

1 Canonical quantization

Canonical quantization is constructed starting from the hamiltonian formulation of a classical
system. It is obtained by lifting its phase space coordinates, the generalized coordinates xi and
their conjugate momenta pi, to linear operators x̂i and p̂i that act on a linear space endowed
with a positive definite norm, the Hilbert space of physical states H. The basic operators must
satisfy commutation relations required to be equal i~ times the value of the corresponding
classical Poisson brackets

[x̂i, p̂j] = i~δij , [x̂i, x̂j] = 0 , [p̂i, p̂j] = 0 . (1)

All classical observables A(x, p), which are functions on phase space, become linear operators
Â(x̂, p̂) acting on the Hilbert spaceH. The most important example is given by the hamiltonian
function H(x, p), which upon quantization becomes the hamiltonian operator Ĥ(x̂, p̂). The
latter generates the time evolution of any state |ψ〉 ∈ H through the Schrödinger equation

i~
∂

∂t
|ψ〉 = Ĥ|ψ〉 . (2)
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The corresponding solution is a time dependent state |ψ(t)〉 that describes the evolution of the
quantum system. This set up is known as the Schrödinger picture of quantum mechanics. It is
a formal quantization procedure that becomes operative once one finds an irreducible unitary
representation of the operator algebra in eq. (1). A mathematical result, known as the Stone–
von Neumann theorem, states that in quantum mechanics all irreducible representations of (1)
are unitarily equivalent, so that there is a unique procedure of quantizing a classical system1.
Historically, this theorem made it clear that the Schrödinger formulation of quantum mechanics
was equivalent to the one proposed by Heisenberg with its matrix mechanics (known as the
Heisenberg picture).

Let us consider, more specifically, the motion of a non relativistic particle in one dimension
in the presence of an external potential V (x). The classical dynamics is fixed by the action

S[x] =

∫
dt
(m

2
ẋ2 − V (x)

)
. (3)

The quantum theory is recognized by first developing the hamiltonian formulation, defined on
phase space with the Poisson bracket structure and phase space action

S[x, p] =

∫
dt (pẋ−H(x, p)) , H(x, p) =

p2

2m
+ V (x) . (4)

Then, one recognizes that the quantum theory has fundamental operators x̂ and p̂, linear
operators on the Hilbert space H of quantum states, with commutation relations

[x̂, p̂] = i~ , [x̂, x̂] = 0 , [p̂, p̂] = 0 . (5)

The quantum hamiltonian Ĥ = p̂2

2m
+ V (x̂) is an operator on the Hilbert space and generates

the time evolution through the Schrödinger equation (2).
Using the coordinate representation, obtained by considering the eigenstates |x〉 of the

position operator x̂, that satisfy x̂|x〉 = x|x〉 with x a real number, and projecting the various
states of the Hilbert space onto them to identify the wave functions, one finds the familiar way
of realizing quantum mechanics as wave mechanics

|ψ〉 → ψ(x)
(
ψ(x) = 〈x|ψ〉

)
x̂ → x

(
〈x|x̂|x′〉 = x〈x|x′〉 = xδ(x− x′)

)
p̂ → −i~ ∂

∂x

(
〈x|p̂|x′〉 = −i~ ∂

∂x
〈x|x′〉 = −i~ ∂

∂x
δ(x− x′)

)
Ĥ → − ~2

2m

∂2

∂x2
+ V (x)

(
〈x|Ĥ|x′〉 =

(
− ~2

2m

∂2

∂x2
+ V (x)

)
δ(x− x′)

)
(6)

with the Schrödinger equation taking the familiar form

i~
∂ψ(x, t)

∂t
= − ~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) . (7)

Returning to the Dirac bra and ket notation, let us consider the solution of the Schrödinger
equation. Given a ket |ψi〉 that describes the system at initial time ti, the solution of the
Schrödinger equation for time independent hamiltonians can be written as

|ψ(t)〉 = e−
i
~ Ĥ(t−ti)|ψi〉 (8)

1Up to the problem of resolving ordering ambiguities, often present when one tries to relate the classical
hamiltonian H(x, p) to its quantum counterpart Ĥ(x̂, p̂).
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which indeed satisfies the equation and the boundary condition |ψ(ti)〉 = |ψi〉. The amplitude
to find the system at time tf in state |ψf〉 is obtained by projecting the solution evaluated at
time tf onto the state |ψf〉

〈ψf |ψ(tf )〉 = 〈ψf |e−
i
~ Ĥ(tf−ti)|ψi〉 . (9)

This amplitude is called “transition amplitude”. Thus, we see that amplitudes correspond to
matrix element of e−

i
~ Ĥ(tf−ti), the unitary operator that evolves in time the states of the system.

In the following sections we shall find a path integral representation for such amplitudes.

2 Path integrals in phase space

To derive a path integral expression for the transition amplitudes, we start by inserting twice
the identity operator 1, expressed using the eigenstates of the position operator

1 =

∫
dx |x〉〈x| with 〈x|x′〉 = δ(x− x′) , (10)

and rewrite (9) as

〈ψf |e−
i
~ Ĥ(tf−ti)|ψi〉 = 〈ψf | 1 e−

i
~ Ĥ(tf−ti) 1 |ψi〉

=

∫
dxf

∫
dxi ψ

∗
f (xf ) 〈xf |e−

i
~ Ĥ(tf−ti)|xi〉ψi(xi) (11)

where ψi(xi) = 〈x|ψi〉 and ψf (xf ) = 〈x|ψf〉 are the wave functions for the initial and final
states. This rewriting shows that it is enough to consider the matrix element of the evolution
operator between position eigenstates

A(xi, xf ;T ) = 〈xf |e−
i
~ ĤT |xi〉 (12)

where T = (tf − ti) is the total propagation time. We recall that it satisfies the Schrödinger
equation

i~
∂

∂T
A(xi, xf ;T ) = Ĥ(xf , pf = −i~∂xf )A(xi, xf ;T ) (13)

with initial conditions A(xi, xf ; 0) = δ(xf − xi).
We are going to consider quantum hamiltonians of the form

Ĥ(x̂, p̂) =
1

2m
p̂2 + V̂ (x̂) (14)

where V is a generic scalar potential. The derivation of the path integral proceeds now as
follows. One splits the transition amplitude A(xi, xf ;T ) as the product of N factors, and
inserts N − 1 times the completeness relation (10) in between the factors

A = 〈xf |e−
i
~ ĤT |xi〉 = 〈xf |

(
e−

i
~ Ĥ

T
N

)N
|xi〉 = 〈xf | e−

iε
~ Ĥe−

iε
~ Ĥ · · · e−

iε
~ Ĥ︸ ︷︷ ︸

N times

|xi〉

= 〈xf |e−
iε
~ Ĥ 1 e−

iε
~ Ĥ 1 · · · 1 e−

iε
~ Ĥ |xi〉 =

∫ (N−1∏
k=1

dxk

) N∏
k=1

〈xk|e−
iε
~ Ĥ |xk−1〉 (15)
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where for convenience we have denoted x0 ≡ xi, xN ≡ xf , and ε ≡ T
N

. To evaluate this
expression better, it is convenient to use the resolution of the identity N more times, now
expressed in terms of the momentum eigenstates

1 =

∫
dp

2π~
|p〉〈p| with 〈p|p′〉 = 2π~ δ(p− p′) (16)

to obtain

A =

∫ (N−1∏
k=1

dxk

) N∏
k=1

〈xk|e−
iε
~ Ĥ |xk−1〉 =

∫ (N−1∏
k=1

dxk

) N∏
k=1

〈xk| 1 e−
iε
~ Ĥ |xk−1〉

=

∫ (N−1∏
k=1

dxk

)( N∏
k=1

dpk
2π~

) N∏
k=1

〈xk|pk〉〈pk|e−
iε
~ Ĥ |xk−1〉 . (17)

This is an exact expression. Note that there is one more integration over momenta than
integrations over coordinates, consequence of choosing coordinate eigenstates as initial and
final states in the transition amplitude. Now one can manipulate this expression further by
making approximations that are valid in the limit N → ∞ (i.e. ε → 0). The crucial point is
the evaluation of the following matrix element

〈p|e−
iε
~ Ĥ(x̂,p̂)|x〉 = 〈p|

(
1 − iε

~
Ĥ(x̂, p̂) + · · ·

)
|x〉

= 〈p|x〉 − iε

~
〈p|Ĥ(x̂, p̂)|x〉+ · · ·

= 〈p|x〉
(

1− iε

~
H(x, p) + · · ·

)
= 〈p|x〉 e−

iε
~ H(x,p)+··· . (18)

These approximations are all valid in the limit of small ε. The substitution 〈p|Ĥ(x̂, p̂)|x〉 =
〈p|x〉H(x, p) follows from the simple structure of the hamiltonian (14), that allows one to
act with the momentum operator on the left, and with the position operator on the right, to
have the operators replaced by the corresponding eigenvalues. Notice that there is no need of
commuting operators inside the hamiltonian, because of the simplicity of the hamiltonian we
considered. The final result is that all operators are simply replaced by eigenvalues. This way
the quantum hamiltonian Ĥ(x̂, p̂) gets replaced by the classical function H(x, p) = p2

2m
+ V (x).

There exists a rigorous proof that these manipulations are correct for a wide class of physically
interesting potentials V (x) (the “Trotter formula”). We shall not review those mathematical
subtleties, as the physically intuitive derivation given above is enough for our purposes.

Using now eq. (18), and remembering that the wave functions of the momentum eigenstates
(the plane waves) are normalized as

〈x|p〉 = e
i
~px , 〈p|x〉 = 〈x|p〉∗ = e−

i
~px , (19)

that follows from the normalization chosen in (10) and (16), one obtains

〈xk|pk〉〈pk|e−
iε
~ Ĥ |xk−1〉 = e

i
~pk(xk−xk−1)− iε~ H(xk−1,pk) (20)

up to terms that vanish for ε→ 0. This expression can now be inserted in (17). At this stage
the transition amplitude does not contain any more operators, bra and kets. It contains just
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integrations, though a big number of them, of ordinary functions

A = lim
N→∞

∫ (N−1∏
k=1

dxk

)( N∏
k=1

dpk
2π~

)
e
iε
~
∑N
k=1

[
pk

(xk−xk−1)

ε
−H(xk−1,pk)

]

=

∫
DxDp e

i
~S[x,p] . (21)

This is the path integral in phase space. One recognizes in the exponent a discretization of the
classical phase space action

S[x, p] =

∫ tf

ti

dt
(
pẋ−H(x, p)

)
→

N∑
k=1

ε
(
pk

(xk − xk−1)

ε
−H(xk−1, pk)

)
(22)

where tf − ti = T = Nε is the total propagation time, with the paths in phase space discretized
as

x(t) , p(t) → xk = x(ti + kε) , pk = p(ti + kε) . (23)

The last way of writing the amplitude in (21) is symbolic but suggestive: it indicates the sum
over all paths in phase space weighted by the exponential of i

~ times the classical action. It
depends implicitely on the boundary conditions assigned to the paths x(t).

3 Path integrals in configuration space

The path integral in configurations space is easily derived by integrating over the momenta.
Indeed, the dependence on momenta in the exponent of (21) is at most quadratic and can be
eliminated by gaussian integration ∫ ∞

−∞
dp e−

α
2
p2 =

√
2π

α
(24)

which is valid for α > 0, but then extended analytically to include complex values of α (see
section 4.1 for details). In particular, it will be useful to consider gaussian integrals of the type∫ ∞

−∞
dp e−

α
2
p2+βp =

√
2π

α
e
β2

2α (25)

obtained by square completion. Note that the final exponential is the original exponential
inside the integral with argument evaluated at the minimum in p.

Returning to the path integral, and considering the hamiltonian H(x, p) = p2

2m
+ V (x), one

completes the squares2 and performs the gaussian integrations over the momenta

A = lim
N→∞

∫ (N−1∏
k=1

dxk

)( m

2πi~ε

)N
2
e
iε
~
∑N
k=1

[
m
2

(xk−xk−1)
2

ε2
−V (xk−1)

]

=

∫
Dxe

i
~S[x] . (26)

2First rewrite pk
(xk−xk−1)

ε − 1
2mp

2
k = − 1

2m (pk − m (xk−xk−1)
ε )2 + m

2
(xk−xk−1)2

ε2 . Then change integration

variables pk → p̃k = pk −m (xk−xk−1)
ε . The measure is invariant under a translation and it produces the term

− p̃2k
2m + m

2
(xk−xk−1)2

ε2 in the exponent.
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This is the path integral in configuration space. It contains in the exponent the configuration
space action suitably discretized

S[x] =

∫ tf

ti

dt
(m

2
ẋ2 − V (x)

)
→

N∑
k=1

ε
[m

2

(xk − xk−1

ε

)2

− V (xk−1)
]
. (27)

Again, the last way of writing the path integral in (26) is symbolic, and indicates the formal sum
over paths in configuration space, weighted by the exponential of i

~ times the classical action.
The space of paths is given by the space of functions x(t) with boundary values x(ti) = xi and
x(tf ) = xf . It is an infinite dimensional space. How to perform concretely the path integral over
this functional space is defined precisely by the discretization, that approximates a function
x(t) by its N + 1 values xk = x(ti + kε) at k = 0, 1, 2, ..., N , as shown in fig. 1.

t

x

Figure 1: The discretized path integral in configuration space.

Thus, we have found a path integral that computes quantum mechanical amplitudes

A =

∫
Dx(t) e

i
~S[x(t)] (28)

with all paths contributing, as depicted in fig. 2.

t

x

a

b

Figure 2: All paths x(t) contribute to the path integral.

3.1 Free particle

For a free particle (V (x) = 0) one may use repeatedly a gaussian integration and calculate from
eq. (26) the exact transition amplitude

A(xi, xf ;T ) =

√
m

2πi~T
e
i
~
m(xf−xi)

2

2T . (29)
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It satisfies the free Schrödinger equation

i~
∂

∂T
A(xi, xf ;T ) = − ~2

2m

∂2

∂x2
f

A(xi, xf ;T ) (30)

with initial conditions
A(xi, xf ; 0) = δ(xf − xi) . (31)

The result is very suggestive: up to a prefactor it is given by the exponential of i
~ times the

classical action evaluated on the classical path, i.e. the path that satisfies the classical equations
of motion. This is typical for those cases in which the semiclassical approximation happens to
be exact. One may interpret the prefactor as due to quantum (“one-loop”) corrections to the
classical (“tree-level”) result. The free particle case is also quite special: the exact final result
is valid for any N , and there is no need to take the limit N → ∞. The case N = 1, which
carries no integration at all, is already exact.

A formal but useful way of calculating gaussian path integrals is achieved by working directly
in the continuum limit. One does not consider the precise definition of the path integral
measure, but uses only its formal properties, and in particular its translational invariance. The
calculation is formal in the sense that one assumes properties of the path integral measure
(that eventually must be proven by an explicit regularization and construction, as the one

given earlier). The calculation goes as follows. The action is S[x] =
∫ T

0
dt m

2
ẋ2, and the

classical equations of motion with the boundary conditions are solved by

xcl(t) = xi + (xf − xi)
t

T
. (32)

One can represent a generic path x(t) as the classical path xcl(t) plus quantum fluctuations q(t)

x(t) = xcl(t) + q(t) (33)

where the fluctuations q(t) must vanish at t = 0 and t = T to preserve the boundary conditions.
One may interpret xcl(t) as the origin in the space of functions. Then, one computes the path
integral as follows

A(xi, xf ;T ) =

∫
Dxe

i
~S[x] =

∫
D(xcl + q) e

i
~S[xcl+q]

=

∫
Dq e

i
~ (S[xcl]+S[q]) = e

i
~S[xcl]

∫
Dq e

i
~S[q]

= Ne
i
~S[xcl] = Ne

i
~
m(xf−xi)

2

2T (34)

where translational invariance of the path integral measure has been used in the form Dx =
D(xcl + q) = Dq. There is no linear term in q(t) in the action because the function xcl(t) solves
the classical equations of motion: for quadratic actions one has S[xcl + q] = S[xcl] + S[q]. The

normalization factor N =
∫
Dq e

i
~S[q] is undetermined by this method, but it is a constant that

does not depend on xi and xf . Very often its precise value is not needed, but one can fix it by
requiring that the final result satisfies the Schrödinger equation, finding N =

√
m

2πi~T .
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3.2 Euclidean time and statistical mechanics

Quantum mechanics can be related to statistical mechanics by an analytic continuation. We
introduce this relation by considering the free particle just described.

Continuing analytically the time parameter to purely imaginary values by T → −iβ with
real β, and setting ~ = 1, the free Schrödinger equation (30) turns into the heat equation

∂

∂β
A =

1

2m

∂2

∂x2
f

A . (35)

Its fundamental solution, i.e. the solution with boundary condition A
β→0−→ δ(xf − xi), is given

by

A =

√
m

2πβ
e−

m(xf−xi)
2

2β , (36)

and can be obtained from (29) by the same analytic continuation. This continuation is called
“Wick rotation”, see fig. 3.

T

−iβ

Figure 3: Wick rotation to euclidean times.

The Wick rotation can be performed directly on the path integral to obtain euclidean path
integrals. Analytically continuing the time variable as t→ −iτ , one finds that the action with
“minkowskian” time (i.e. with a real time t) turns into an “euclidean” action SE defined by

iS[x] = i

∫ T

0

dt
m

2
ẋ2 → −SE[x] = −

∫ β

0

dτ
m

2
ẋ2 (37)

where in the euclidean action one defines ẋ = dx
dτ

, with τ usually called “euclidean time”. The
euclidean action thus defined is positive definite. It appears in the path integral that, after the
Wick rotation, takes the form ∫

Dxe−SE [x] . (38)

For a free theory it is truly gaussian, with exponential damping rather than with increasingly
rapid phase oscillations. In this form it coincides with the functional integral introduced by
Wiener in the 1920’s to study brownian motion and the heat equation.

Such euclidean path integrals are quite useful in statistical mechanics, where β is related
to the inverse temperature Θ by β = 1

kΘ
, where k is the Boltzmann’s constant. To understand

this, let us consider the trace of the evolution operator e−
i
~ ĤT . It can be written using energy

eigenstates (labeled by n if the spectrum is discrete), or equivalently using position eigenstates
(labeled by x), as

Z ≡ Tr e−
i
~ ĤT =

∑
n

e−
i
~EnT =

∫
dx 〈x|e−

i
~ ĤT |x〉 . (39)
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It can be Wick rotated Z → ZE (with T → −iβ) to obtain the statistical partition function
ZE of the quantum system with hamiltonian Ĥ. Setting ~ = 1, it reads

ZE ≡ Tr e−βĤ =
∑
n

e−βEn =

∫
dx 〈x|e−βĤ |x〉 . (40)

At this stage it is immediate to find a path integral representation of the statistical partition
function: one performs a Wick rotation of the path integral action, sets the initial state (at
euclidean time τ = 0) equal to the final state (at euclidean time τ = β), and sums over all
possible states, as indicated in (40). The paths become closed, x(0) = x(β), and the partition
function becomes

ZE = Tr e−βĤ =

∫
PBC

Dxe−SE [x] (41)

where PBC stands for “periodic boundary conditions”, indicating the sum over all paths that
close onto themselves in an euclidean time β.

Introduced here for the free theory, the Wick rotation is supposed to be of more general
value, relating quantum mechanics to statistical mechanics in the interacting case as well. Even
if one is interested in the theory with a real time, nowadays one often works in the euclidean
version of the theory, where factors of the imaginary unit i are absent, and path integral
convergence is more easily kept under control. Only at the very end one performs the inverse
Wick rotation to read off the result for the minkowskian theory.

The Wick rotation procedure is better appreciated by considering the usual time as corre-
sponding to the real line of a complex plane: denoting the complex time by tθ = te−iθ, the
usual real time appears at θ = 0, while the euclidean time τ appears at θ = π

2
as tπ

2
= −iτ . The

analytical continuation of all physical quantities is achieved by continually increasing θ form
0 to π

2
, a clockwise rotation of the real axis into the imaginary one. The generalized partition

function Zθ ≡ Tr e−
i
~ Ĥtθ with a complex time tθ = te−iθ with positive t has a damping factor

for all 0 < θ ≤ π
2

and for all hamiltonians that are bounded from below (up to an overall factor
due to the value of the ground state energy, if that happens to be negative).

Similar considerations can be made for path integrals in minkowskian and euclidean times
with other boundary conditions. Path integrals in euclidean times are mathematically better de-
fined (one may develop a mathematically well-defined measure theory on the space of functions),
at least for quadratic actions and perturbations thereof. Path integral with a minkowskian time
are more delicate, and physicists usually use the argument of rapid phase oscillations to deduce
that unwanted terms vanish. The Wick rotation suggests a way of defining the path integral
in real time starting from the euclidean time one. These points of mathematical rigor are not
needed for the applications that we are going to consider, and the derivation of path integrals
described previously is enough for our purposes.

3.3 Comments

We have seen that the quantization of a classical system with action S[x] is achieved by the

path integral
∫
Dxe

i
~S[x] that computes the transition amplitude.

In the path integral formulation the classical limit is intuitive: macroscopic systems have
large values of action in ~ units. Macroscopically small variations of paths can still make
the phase variations δS[x]

~ much bigger than π, so that amplitudes of nearby paths cancels by
destructive interference. This is true except for variations that make δS[x] = 0, which is the
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condition that identifies the classical path. Nearby paths have amplitudes that sum coherently
with the classical one, and the path integral is dominated by the classical trajectory.

The notation
∫
Dx is symbolic and indicates the formal integration over the space of func-

tions x(t). To make it precise one has to regulate the functional space by making it finite di-
mensional (“regularization”). Then one integrates over the regulated finite-dimensional space,
and eventually takes the continuum limit by removing the regularization parameters. If this
procedure is done with care, the limit exists and gives the correct transition amplitude. In the
previous derivation we have seen that the space of paths is regulated by approximating the func-
tions x(t) by their N−1 values computed at intermediate points, the xk’s with k = 1, ..., N−1.
This makes the space of functions finite dimensional. The action is discretized and evaluated
using the approximated functions. At this stage the integration over the regulated functional
space is well defined. Eventually one takes the continuum limit (N → ∞): if the integration
measure is chosen appropriately, as in eq. (26), this limit exists and gives a viable definition of
the path integral.

We started from canonical quantization and derived the above discretized form of the space
of functions. This regularization is often called Time Slicing (TS). Viceversa, one can start
directly with the path integral, regulate it in a suitable way, and use it to construct the quantum
theory (Feynman originally started this way). The path integral is used to evaluate a transition
amplitude that is seen to satisfy a Schördinger wave equation. This can be viewed as an
alternative approach to quantization. In the regularization procedure of the path integral one
must make several choices, and they may produce different transition amplitudes. For example,
in a TS regularization one may discretize the potential term V (x(t)) in the action to V (xk)
or V (xk−1) or V (1

2
(xk + xk−1). In the present case this makes no difference, and one obtains

the same continuum limit. For more complicated interactions, such as those arising from
the coupling to gauge fields, or in the presence of a nontrivial background metric, different
discretizations may produce different final answers. These ambiguities are the path integral
counterparts of the ordering ambiguities of canonical quantization, where choosing different
orderings produce different quantum hamiltonians, and thus different quantum theories.

We have introduced path integrals by considering a single degree of freedom. Extension to a
finite number of degrees of freedom is immediate, so that quantizing the motion of one or more
particles in a finite dimensional space does not pose any new conceptual problem. For example,
the motion of a nonrelativistic particle in R3 with cartesian coordinates ~x, in the presence of a
scalar potential V (~x), is quantized by the following discretized path integral∫

Dxe
i
~S[x] = lim

N→∞

∫ (N−1∏
k=1

d3xk

)( m

2πi~ε

) 3N
2
e
i
~
∑N
k=1 ε

[
m
2

(~xk−~xk−1)
2

ε2
−V (~xk−1)

]
(42)

where, of course, the classical action is

S[x] =

∫ T

0

dt
(m

2
~̇x

2 − V (~x)
)

= lim
N→∞

N∑
k=1

ε
[m

2

(~xk − ~xk−1)2

ε2
− V (~xk−1)

]
. (43)

Formally, one can also consider the case of an infinite number of degrees of freedom, as
appropriate for a field theory. In this case convergence is not guaranteed, and the removal of
the regularization may lead to infinite results. In the class of theories called renormalizable,
the infinites can be removed consistently by a renormalization procedure that redefines the
dynamical variables and the coupling constants, and allows to obtain finite results, at least at
the level of perturbation theory.
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4 Correlation functions

Correlation functions are quantities used to describe several physical observables in the quantum
theory. In particular, they are also useful to develop the perturbative expansion around the
solvable gaussian path integral that corresponds to a “free” theory (we include the harmonic
oscillator in this class).

Correlation functions are normalized averages of the product of n dynamical variables, eval-
uated at different times and weighted by e

i
~S. In our one dimensional example, the normalized

“n-point correlation function” is defined by

〈x(t1)x(t2) . . . x(tn)〉 =
1

Z

∫
Dxx(t1)x(t2) . . . x(tn) e

i
~S[x] (44)

where Z =
∫
Dxe

i
~S[x] provides the normalization to guarantee that 〈1〉 = 1. Of particular

importance is the 2-point function 〈x(t1)x(t2)〉, often called the propagator. It is understood
that correlation functions depend implicitly on the boundary conditions that specify the initial
and final states. Very often, especially in quantum field theory, one chooses the initial and final
states to be the vacuum state (the state with lowest energy) and, in additions, considers an
infinite propagation time. We have mostly considered amplitudes between positions eigenstates,
but one can insert any desired state as boundary state by using eq. (11).

It is useful to collect all correlation functions into a single object Z[J ], called the generating
functional of correlation functions. One uses an arbitrary function J(t), called “source”, and
defines Z[J ] by

Z[J ] =

∫
Dxe

i
~ (S[x]+

∫
dt J(t)x(t)) (45)

Clearly, a functional derivative over J(t) provides an insertion inside the path integral of i
~x(t),

so that taking n functional derivartives (at different times), setting then J(t) = 0, and normal-
izing properly produces the n-point correlation function

〈x(t1)x(t2) · · ·x(tn)〉 =
1

Z

(
~
i

)n
δnZ[J ]

δJ(t1)δJ(t2) · · · δJ(tn)

∣∣∣∣
J=0

(46)

where Z = Z[0]. Alternatively, one may expand the exponential e
i
~
∫
dt J(t)x(t) to obtain

Z[J ] =

∫
Dxe

i
~ (S[x]+

∫
dt J(t)x(t))

=
∞∑
n=0

1

n!

(
i

~

)n ∫
dt1dt2 . . . dtn 〈x(t1)x(t2) · · ·x(tn)〉U J(t1)J(t2) · · · J(tn) (47)

where the subscript “U” indicates un-normalized correlation functions, i.e. correlation functions
obtained without dividing by Z, which can again be used to prove (46).

We are going to use mostly path integrals. However, it is useful to compare with the corre-
sponding definition of correlation functions given in canonical quantization. We have employed
the Schrödinger picture to evaluate the transition amplitude. In this picture operators are time
independent and states acquire the time dependence by the Schrödinger equation. To state the
equivalent definition of the n-point correlation function, given the times t1, t2, ..., tn, one has to
reorder them from the earliest to the latest one, i.e. use the permutation T (1), T (2), ..., T (n)
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of the numbers 1, 2, ..., n such that tT (1) < tT (2) < ... < tT (n). Then one defines

〈x(t1)x(t2) · · ·x(tn)〉 =
1

Z
〈xf |e−

i
~ Ĥ(tf−tT (n))x̂ e−

i
~ Ĥ(tT (n)−tT (n−1)) · · · (48)

· · · e−
i
~ Ĥ(tT (3)−tT (2))x̂ e−

i
~ Ĥ(tT (2)−tT (1))x̂ e−

i
~ Ĥ(tT (1)−ti)|xi〉

where Z = 〈xf |e−
i
~ Ĥ(tf−ti)|xi〉 is the transition amplitude. The time ordering guarantees that

in the path integral derivation, due to the time slicing procedure, each position operator is
substituted by the eigenvalue of the eigenstate carried by the resolution of the identity inserted
next to the operator under consideration. This is always the case as, for very large N , the time
discretization is sufficiently fine to have a resolution of the identity next to the position of one
of the operators x̂, which is then substituted by an eigenvalue.

Equivalently, in the Heisenberg picture, one assigns the time evolution to the operators
while states are time independent. Heisenberg’s equations of motion (Heisenberg’s “matrix
mechanics”) read as

i~
dx̂H
dt

= [x̂H , Ĥ] (49)

where the subscript H refers to operators in the Heisenberg picture. They correspond to the
quantum version of Hamilton’s equations, with the Poisson bracket substituted by a commu-
tator that takes the value of i~ times the classical Poisson bracket. For a time independent
hamiltonian the solution can formally be written as

x̂H(t) = e
i
~ Ĥtx̂H(0)e−

i
~ Ĥt (50)

where the value of x̂H(0) can be identified with the time independent Schrödinger operator x̂.
Eigenstates of x̂H(t) can be written as |x, t〉H

x̂H(t)|x, t〉H = x|x, t〉H . (51)

The relation to the Schrödinger picture is simply given in terms of the unitary operator e
i
~ Ĥt.

This operator relates the two pictures which are then unitarily equivalent, as guaranteed by
the Stone–von Neumann theorem. Correlation functions in the Heisenberg picture are defined
by

〈x(t1)x(t2)...x(tn)〉 =
1

Z
H〈xf , tf |T x̂H(t1)x̂H(t2) · · · x̂H(tn) |xi, ti〉H (52)

where the symbol T indicates time ordering, i.e. the prescription of ordering the operators
in such a way that they have an increasing value of time when going form right to left. The
value of the transition amplitude that normalizes the expression is written, in such a picture,
as Z = H〈xf , tf |xi, ti〉H . In extensions to QFT one normally chooses ti = −∞, tf = ∞, and
picks as final states the vacuum state, rather than position eigenstates.

4.1 Digression over gaussian integrals

Gaussian integrals in one or more variables are easily computed. For a real variable φ ∈ R they
are given by ∫ ∞

−∞

dφ√
2π

e−
1
2
Kφ2 =

1√
K∫ ∞

−∞

dφ√
2π

e−
1
2
Kφ2+Jφ =

1√
K
e

1
2

1
K
J2

(53)
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with K a real positive number. The first one is the standard gaussian integral, whose square
is easily computed in polar coordinates. The second one is obtained by square completion, i.e.
writing −1

2
Kφ2 + Jφ = −1

2
K(φ− J

K
)2 + 1

2
1
K
J2, and then shifting the measure from φ to φ− J

K

to obtain the desired result.
They are straightforwardly extended to n real variables∫

dnφ

(2π)
n
2

e−
1
2
φiKijφ

j

= (detKij)
− 1

2∫
dnφ

(2π)
n
2

e−
1
2
φiKijφ

j+Jiφ
i

= (detKij)
− 1

2 e
1
2
JiG

ijJj (54)

whereKij is a real, symmetric, positive definite matrix (all eigenvalues must be strictly positive),
and Gij its inverse (so that KijG

jk = δki ). The first integral is immediate if Kij is diagonal, and
valid in full generality by noting that Kij is diagonalizable by an orthogonal transformation
which leaves the measure invariant. The last integral is obtained again by square completion.

These gaussian integrals are suitable for euclidean path integrals. Moreover, in a hypercon-
densed notation to be explained shortly, path integrals look very much like ordinary integrals.
Of course the definition of determinants for infinite dimensional matrices is delicate, and re-
quires a regularization procedure.

By analytical extension one obtains gaussian integrals suitable for quantum mechanics∫
dnφ

(−2πi)
n
2

e−
i
2
φiKijφ

j+iJiφ
i

= (detKij)
− 1

2 e
i
2
JiG

ijJj (55)

where again Gij is the inverse of Kij. Convergence to the given values is guaranteed if Kij has a
small negative imaginary part. This can be obtained by the Feynman iε trick: one replaces the
real matrix Kij by Kij − iεδij with ε > 0, the ε part assures a gaussian damping for |φ| → ∞,
thus guaranteeing the convergence of the integral, and at the end of the calculation one sets
ε → 0 (in quantum field theory this corresponds to the causal iε Feynman prescription). In a
hypercondensed notation, to be explained shortly, these formulae give the formal solution of
path integrals of free theories (meaning theories with quadratic actions, in this context) without
gauge invariances, in either quantum mechanics or quantum field theory. Gauge invariance
would produce a vanishing detKij, and one must apply a gauge fixing procedure to obtain a
finite answer. This situation will not be described on these notes.

4.2 Hypercondensed notation and generating functionals

To proceed swiftly, it is useful to introduce a hypercondensed notation. It allows to treat path
integrals, including those for field theories, formally as ordinary integrals. The hypercondensed
notation is defined by lumping together discrete and continuous indices into a single index, so
that a variable φi can be used as a shorthand notation for the position x(t) of the particle,
identifying

x(t) → φi =⇒
{
x→ φ
t→ i

. (56)

Similarly for fields, as for example the vector quadripotential Aµ(xν), the hypercondensed
notation is obtained by denoting

Aµ(xν) → φi =⇒
{
A→ φ
µ, xν → i

(57)
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where now the index i contains a discrete part (the discrete index µ = 0, 1, 2, 3) and a contin-
uous part (the spacetime coordinates xν = (x0, x1, x2, x3) ∈ R4). Indices may be lowered and
raised with a metric (given by the identity matrix in many cases, though one may consider
more general situations). Repeated indices are understood to be summed over (the Einstein
summation convention). Thus, the notation φiφi stands in the above cases for

∫
dt x(t)x(t)

and
∫
d4xAµ(x)Aµ(x), respectively. Or equivalently, to make explicit the presence of a metric,

as
∫
dt
∫
dt′ x(t)δ(t− t′)x(t′) and

∫
d4x

∫
d4y Aµ(x)ηµνδ4(x− y)Aν(y), respectively (the metric

would be δ(t− t′) and ηµνδ4(x− y), respectively, so that one could also write φiφi = φigijφ
j)

φiφi =⇒
{

=
∫
dt x(t)x(t) =

∫
dt
∫
dt′ x(t)δ(t− t′)x(t′)

=
∫
d4x Aµ(x)Aµ(x) =

∫
d4x

∫
d4y Aµ(x)ηµνδ4(x− y)Aν(y)

. (58)

One must pay attention to simple looking expressions, as they include integrations or infinite
sums, and might not converge.

With such a notation at hand, we are ready to review quickly the definition of correlation
functions, introduce generating functionals, and present gaussian path integration formulae.
We will also describe the Wick’s theorem, that gives a simple way of computing all correlation
functions in a free theory in terms of the 2-point function only (the propagator).

The path integrals in (26) and (42), after denoting the variables in a hypercondensed nota-
tion by φi, can be written as ∫

Dφe
i
~S[φ] (59)

and the correlation functions as

〈φi1φi2 · · ·φin〉 =
1

Z

∫
Dφ φi1φi2 · · ·φine

i
~S[φ] (60)

where Z =
∫
Dφe

i
~S[φ]. The generating functional takes the form

Z[J ] =

∫
Dφ e

i
~ (S[φ]+Jiφ

i) (61)

and generates all correlation functions by differentiation (in hypercondensed notation functional
derivatives look like as usual derivatives, though we keep using the symbol δ of functional
derivative)

〈φi1φi2 · · ·φin〉 =
1

Z[0]

(
~
i

)n
δ

δJi1

δ

δJi2
· · · δ

δJin
Z[J ]

∣∣∣∣
J=0

. (62)

We can now define the generating functional of connected correlation functions W [J ] by

Z[J ] = e
i
~W [J ] ⇒ W [J ] =

~
i

lnZ[J ] . (63)

One can prove that it generates “connected” correlation functions by

〈φi1φi2 · · ·φin〉c =

(
~
i

)n−1
δ

δJi1

δ

δJi2
· · · δ

δJin
W [J ]

∣∣∣∣
J=0

. (64)

We will check this statement and its meaning in the free theory.
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It is also useful to define the effective action Γ[ϕ] as the Legendre transform of W [J ]

Γ[ϕ] = min
J

{
W [J ]− Jiϕi

}
(65)

which is considered as a classical action that includes all quantum corrections. It generates
the so called one-particle irreducible (1PI) correlation functions, though we will not investigate

further this definition. The minimum in J is obtained at ϕi = δW [J ]
δJi

, a relation that must be
inverted to obtain Ji = Ji(ϕ) and inserted back into the right hand side of (65) to obtain the
effective action indeed as a functional of the variable ϕi only.

The last two functionals, W [J ] and Γ[ϕ], find their main applications in quantum field
theory. Equivalent definitions can be given for euclidean path integrals.

4.3 Free theory

It is useful to study free theories, here meaning theories which have a quadratic action. They
provide a simple application of the previous formulae, giving at the same time additional
intuition. A free theory is described by a quadratic action

S[φ] = −1

2
φiKijφ

j (66)

which produces the linear equations of motion Kijφ
j = 0. We assume Kij invertible, which

translates to the fact that there are no gauge symmetries in our model.
As an example, we may take the harmonic oscillator whose action is

S[x] =

∫ ∞
−∞
dt
(1

2
ẋ2 − ω2

2
x2
)

= −1

2

∫ ∞
−∞
dt x(t)

( d2

dt2
+ ω2

)
x(t)

= −1

2

∫ ∞
−∞
dt

∫ ∞
−∞
dt′ x(t)

( d2

dt2
+ ω2

)
δ(t− t′)x(t′)

= −1

2

∫ ∞
−∞
dt

∫ ∞
−∞
dt′ x(t)K(t, t′)x(t′)

 S[φ] = −1

2
φiKijφ

j (67)

where we integrated by parts, and introduced the Dirac delta function δ(t − t′) to expose the
“kinetic matrix” K(t, t′) = ( d

2

dt2
+ ω2)δ(t− t′).

Denoting Dφ ≡ dnφ

(−2πi)
n
2

, setting ~ = 1 for simplicity, and using the gaussian result in eq.

(55), one calculates formally the path integral with sources

Z[J ] =

∫
Dφ ei(S[φ]+Jiφ

i) = (detKij)
− 1

2 e
i
2
JiG

ijJj . (68)

Then, using eq. (62), one obtains the following correlation functions

〈1〉 = 1
〈φi〉 = 0
〈φiφj〉 = −iGij . (69)
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The first one is a consequence of the normalization, the second one reflects the symmetry
φi → −φi, and the third one is known as the propagator, which we find proportional to the
inverse of the kinetic matrix Kij.

Continuing with the calculation of higher point functions, we see that all correlation func-
tions with an odd number of points vanish, again consequence of the symmetry φi → −φi.
Those with an even number n factorize into a sum of (n− 1)!! terms, given by the product of
the 2-point functions which connect two points in all possible ways. This fact is known as the
“Wick’s theorem”. For example, the 4-point correlation function is given by

〈φ1φ2φ3φ4〉 = 〈φ1φ2〉〈φ3φ4〉+ 〈φ1φ3〉〈φ2φ4〉+ 〈φ1φ4〉〈φ2φ3〉 (70)

that indeed contains the sum of 3!! terms. This correlation function is not connected, as it
disconnects into the sum of products of correlation functions of lower order. This is true for all
higher point correlation functions of the free theory.

The generating functional of connected correlation functions W [J ] is obtained from eq. (68)
using the definition (63)

W [J ] =
1

2
JiG

ijJj − Λ (71)

where Λ = − i
2

ln det(Kij) = − i
2

tr ln(Kij) is a constant, whose precise value is often not needed.
One verifies that it generates a 2-point correlation functions that is connected (it generates also
a 0-point function, that can be shown to be connected as well).

Let us also calculate the effective action. The minimum in J of eq. (65) is achieved for

δW

δJi
= ϕi =⇒ ϕi = GijJj =⇒ Ji = Kijϕ

j (72)

so that

Γ[ϕ] = −1

2
ϕiKijϕ

j − Λ . (73)

We see that for a free theory the effective action Γ[ϕ] reproduces the original action S[ϕ] with
an additive constant −Λ, that could be interpreted as (minus) a vacuum energy of quantum
origin. The latter can be disregarded if gravitational interactions are neglected. In general, the
effective action is considered as a classical action that contains the effects of quantization in its
couplings (and thus the effective actions should not be quantized again).

Reinserting ~ by a simple rescaling, we collect here the formulae for a free (gaussian) theory

S[φ] = −1

2
φiKijφ

j

Z[J ] = (detKij)
− 1

2 e
i
2~JiG

ijJj

W [J ] =
1

2
JiG

ijJj − ~Λ

Γ[ϕ] = −1

2
ϕiKijϕ

j − ~Λ = S[ϕ] + ~ corrections.

(74)

with connected 2-pt function
〈φiφj〉 = −i~Gij . (75)
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4.4 Harmonic oscillator

Let us work out in more explicit terms the case of a harmonic oscillator with unit mass

S[x] =

∫ ∞
−∞

dt
(1

2
ẋ2 − ω2

2
x2
)
, Z[J ] =

∫
Dxe

i
~ (S[x]+

∫
dt Jx) (76)

formally solved in the previous section. We repeat the deduction without using the hypercon-
densed notation. We consider an infinite propagation time and a transition amplitude between
the ground state, classically achieved for x = 0. The action in the exponent can be manipulated
with an integration by parts without producing boundary terms (imposing that x(t) is in its
classical vacuum at initial and final times gives a vanishing boundary term, another justification
will be given later on when treating the euclidean version of the problem). Thus the action
takes the form (67)

S[x] = −1

2

∫
dt x(t)

( d2

dt2
+ ω2

)
x(t) = −1

2

∫ ∫
dtdt′ x(t)

( d2

dt2
+ ω2

)
δ(t− t′)x(t′)

≡ −1

2

∫ ∫
dtdt′ x(t)K(t, t′)x(t′) (77)

where K(t, t′) = ( d
2

dt2
+ω2)δ(t−t′) is the differential “kinetic” operator of the harmonic oscillator.

The inverse of this matrix (i.e. the Green function of the differential operator) is conveniently
written in a Fourier transform

G(t, t′) =

∫
dp

2π

e−ip(t−t
′)

−p2 + ω2
(78)

which is verified to satisfy the defining equation∫
dt′′K(t, t′′)G(t′′, t′) =

( d2

dt2
+ ω2

)
G(t, t′) = δ(t− t′) (79)

that in a hypercondensed notation would have been written as KijGjl = δil . Adding the
Feynman iε prescription for specifying how to integrate around the poles p = ±ω (ω2 → ω2− iε
with ε→ 0+) one computes

G(t, t′) =

∫
dp

2π

e−ip(t−t
′)

−p2 + ω2 − iε
=

i

2ω
e−iω|t−t

′| . (80)

The computation is standard. The integration region is seen as the real axis of the complex
plane, and one adds a semicircle at infinity (the one that gives no contibution) to close the
contour and use the Cauchy’s residue theorem to evaluate the integral. For positive t− t′ one
closes the contour in the lower half plane, for negative t− t′ one closes the contour in the upper
half plane. In formulae,

G(t, t′) =

∫
dp

2π

e−ip(t−t
′)

−p2 + ω2 − iε

= −
∫

dp

2π

e−ip(t−t
′)

(p− ω + iε′)(p+ ω − iε′)

= θ(t− t′) i

2ω
e−iω(t−t′) + θ(t′ − t) i

2ω
eiω(t−t′) =

i

2ω
e−iω|t−t

′| (81)
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Re p

Im p

t− t′ < 0

t− t′ > 0

Figure 4: Contour integration around the poles with the Feynman prescription.

where ε ∼ ε′ → 0+ displaces the poles infinitesimally out of the real axis, as in Figure 4.
With the Green function at hand, one completes the square in (76) and finds

Z[J ] =

∫
Dxe

i
~ (S[x]+

∫
dt Jx)

=

∫
Dx exp

[
− i

~

∫∫
dtdt′

(1

2
x(t)K(t, t′)x(t′)− J(t)δ(t− t′)x(t′)

+
1

2
J(t)G(t, t′)J(t′)− 1

2
J(t)G(t, t′)J(t′)

)]
= e

i
2~

∫∫
dt dt′ J(t)G(t,t′)J(t′)

∫
Dx̃ exp

(
− i

~

∫∫
dt dt′

1

2
x̃(t)K(t, t′)x̃(t′)

)
︸ ︷︷ ︸

N ∼ det−1/2[K(t,t′)]

= N exp
( i

2~

∫∫
dt dt′ J(t)G(t, t′)J(t′)

)
(82)

where x̃(t) = x(t)−
∫
dt′G(t, t′)J(t′) is the shifted variable that completes the square.

Having found the complete generating functional, one may compute the 2-point function
(the propagator)

〈x(t)x(t′)〉 =

∫
Dxx(t)x(t′)e

i
~S[x]∫

Dxe
i
~S[x]

=
1

Z[0]

(
~
i

)2
δ2Z[J ]

δJ(t)δJ(t′)

∣∣∣∣
J=0

= −i~G(t, t′)

=
~

2ω
e−iω|t−t

′| . (83)

4.4.1 The Klein-Gordon propagator

The quantum field theory of a free Klein-Gordon scalar field can be viewed as an higher di-
mensional analogue of the harmonic oscillator. The action of a real scalar field φ(x) is given
by

S[φ] =

∫
d4x
(
− 1

2
∂µφ∂µφ−

m2

2
φ2
)
. (84)
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In hypercondensed notation

φ(x)→ φi , (−�x +m2)δ(4)(x− y)→ Kij (85)

it takes the standard form of a free theory given in eq. (66). Its path integral quantization is
readily performed. Setting ~ = 1 for simplicity, one finds the two-point function (see eq. (69))

〈φ(x)φ(y)〉 = −iG(x− y) (86)

where G(x) is the Green function of the Klein-Gordon operator

(−�+m2)G(x) = δ(4)(x) . (87)

Its Fourier transform is

G(x) =

∫
d4p

(2π)4

eipµx
µ

p2 +m2 − iε
(88)

where d4p ≡ dp0d3p and p2 ≡ pµpµ = −(p0)2 + ~p 2. There are poles corresponding to the

solutions of the mass shell condition, p0 =
√
~p 2 +m2 (positive energies) and p0 = −

√
~p 2 +m2

(negative energies). The Feynman iε prescription sends positive energies forwards in time and
negative energies backwards in time. It corresponds to the physical interpretation of particle
and antiparticles with positive energies and always propagating forwards in time. Setting
Ep =

√
~p 2 +m2 one finds

〈φ(x)φ(y)〉 = −iG(x− y) = −i
∫

d4p

(2π)4

eip·(x−y)

p2 +m2 − iε

= i

∫
d3p

(2π)3
ei~p·(~x−~y)

∫
dp0

2π

e−ip
0(x0−y0)

(p0 − Ep + iε′)(p0 + Ep − iε′)

=

∫
d3p

(2π)3
ei~p·(~x−~y)

[
θ(x0 − y0)

e−iEp(x0−y0)

2Ep
+ θ(y0 − x0)

e−iEp(y0−x0)

2Ep

]

=

∫
d3p

(2π)3
ei~p·(~x−~y) e

−iEp|x0−y0|

2Ep
(89)

where ε ∼ ε′ → 0+ displaces the poles as in Figure 4. Comparing with the two-point function of

the harmonic oscillator (∼ e−iω|t−t
′|

2ω
) one is led to interpret the Klein-Gordon field as a collection

of an infinite number of harmonic oscillators of frequency Ep and parametrized by ~p.

4.4.2 Harmonic oscillator in euclidean time

The statistical partition function in the limit of vanishing temperature (Θ→ 0), corresponding
to an infinite euclidean propagation time (β →∞), takes a simple form

ZE = Tr e−βĤ =
∑
n

e−βEn
β→∞−→ e−βE0 + subleading terms. (90)

This is true even in the presence of a source J if one assumes that the source is nonvanishing for a
finite interval of time only: the remaining infinite time is sufficient to project the operator e−βĤ
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onto the ground state. This allows to rewrite the generating functional Z[J ] in the euclidean
case in a simpler way, justifying the dropping of boundary terms in the integration by parts in
the classical action. The statistical partition function is obtained by using periodic boundary
conditions, and for large β one gets the projection onto the ground state

ZE[J ] =

∫
PBC

Dxe−SE [x]+
∫
dτ Jx β→∞−→ lim

β→∞
e−βE0(J)

SE[x] =

∫ ∞
−∞

dτ
(1

2
ẋ2 +

ω2

2
x2
)

(91)

where E0(J) is the ground state energy in the presence of the source J . We can now repeat
the previous calculation in the present context. We integrate by parts without encountering
boundary terms, as the paths are closed, and the path integral is strictly gaussian

ZE[J ] =

∫
PBC

Dx exp
[
−
∫
dτ
(1

2
x(τ)

(
− d2

dτ 2
+ ω2

)
x(τ)− J(τ)x(τ)

)]
= N exp

[1

2

∫
dτdτ ′ J(τ)GE(τ, τ ′)J(τ ′)

]
(92)

where the euclidean Green function GE is given by

GE(τ, τ ′) =
[
− d2

dτ 2
+ ω2

]−1

=

∫
dpE
2π

e−ipE(τ−τ ′)

p2
E + ω2

=
1

2ω
e−ω|τ−τ

′| (93)

and is unique: there are no poles and related prescriptions to specify how to perform the
integration.

We now verify again the relation between quantum mechanics and statistical mechanics,
realized by the analytic continuation in time, the Wick rotation. The inverse Wick rotation
implies τ ≡ tE → itM ≡ it and pE → −ipM ≡ −ip, with the latter arising form the requirement
that the correct Fourier transform is kept during the analytic deformation. For the two-point
function one finds

〈x(τ)x(τ ′)〉 = GE(τ, τ ′) =

∫
dpE
2π

e−ipE(τ−τ ′)

p2
E + ω2

→

→ −i
∫
dpM
2π

e−ipM (t−t′)

−p2
M + ω2

= −iGM(t, t′) = 〈x(t)x(t′)〉 (94)

which is the Feynman propagator in eq. (83) (with ~ = 1), that is

1

2ω
e−ω|τ−τ

′| → 1

2ω
e−iω|t−t

′| . (95)

We recognize that the Feynman propagator is the unique analytical extension of the eu-
clidean two-point function. All other Green functions, such as the retarded or advanced ones,
correspond to different boundary conditions implemented with different prescriptions for per-
forming the integration around the poles. They cannot be Wick rotated, as one would encounter
poles in the analytic continuation.
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5 Perturbative expansion

The free theory corresponds to a gaussian path integral which is exactly solvable. With interac-
tions one is often unable to compute exactly the path integral, and one must resort to some sort
of approximation. The simplest one is the perturbative expansion around a free theory, which
consists in expanding the solution in power series of the coupling constants that parametrize
the interactions. If the couplings are small enough, the perturbative expansion might give a
good approximation of the solution.

We describe the perturbative expansion taking as guiding example the anharmonic oscillator

S[x] =

∫
dt
(1

2
ẋ2 − ω2

2
x2 − g

3!
x3 − λ

4!
x4
)
. (96)

When the coupling constants g and λ vanish, the theory is exactly solvable. Thus one may
try to include perturbatively the corrections that arise when g and λ are small enough. It is
convenient to split the action as sum of two terms, a free part S0 and an interacting one Sint

S[x] = S0[x] + Sint[x]

S0[x] =

∫
dt
(1

2
ẋ2 − ω2

2
x2
)

Sint[x] =

∫
dt
(
− g

3!
x3 − λ

4!
x4
)
. (97)

Including a source term, one considers the path integral and expands in a Taylor series the
exponential of the interaction term

Z[J ] =

∫
Dxe

i
~ (S[x]+

∫
dt Jx) (98)

=

∫
Dxe

i
~ (S0[x]+Sint[x]+

∫
dt Jx)

=

∫
Dxe

i
~Sint[x] e

i
~ (S0[x]+

∫
dt Jx)

=

∫
Dx

[
1 +

i

~
Sint[x] +

1

2

( i
~
Sint[x]

)2

+ · · ·

· · ·+ 1

n!

( i
~
Sint[x]

)n
+ · · ·

]
e
i
~ (S0[x]+

∫
dt Jx) .

Written in the last form, one may proceed in computing it term by term, with the use of the
Wick’s theorem. In an obvious notation, the path integral can also be written as

Z[J ] =
〈
e
i
~Sint[x]

〉
U,0,J

(99)

where the subscripts U, 0, J denote un-normalized averaging (U) with the free theory (0) and
in the presence of a source (J). This last expression is sometimes called the “Dyson formula”.
It generates the perturbative expansion in terms of Feynman diagrams, as we shall see.

An alternative way of writing the perturbative series is the following one

Z[J ] =

∫
Dx e

i
~ (S[x]+

∫
dt Jx) =

∫
Dx e

i
~Sint[x] e

i
~ (S0[x]+

∫
dt Jx)

= e
i
~Sint[

~
i
δ
δJ

]

∫
Dx e

i
~ (S0[x]+

∫
dt Jx)

= e
i
~Sint[

~
i
δ
δJ

] Z0[J ] (100)
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which presents the solution as a (quite complicated) differential operator acting on the solution
of the free theory Z0[J ]. In particular, all vacuum diagrams are generated by

Z[0] =

∫
Dx e

i
~S[x] = e

i
~Sint[

~
i
δ
δJ

] Z0[J ]
∣∣∣
J=0

. (101)

The perturbative expansion, depicted in terms of Feynman diagrams, is obtained by ex-
panding the interactions term inside the path integral, and using the Wick theorem to compute
the correlation functions of the free theory: the vertices generated by the interactions poten-
tial contain a coupling constant plus quantum variables that are tied together two by two in
all possible ways with the free propagators (graphically each vertex is denoted by a dot and
propagators are denoted by lines). This is exemplified next in the case of vacuum diagrams for
the anharmonic oscillator.

5.1 Vacuum diagrams

As an example we compute perturbatively the corrections to the ground state energy of the
harmonic oscillator due to the anharmonic potential terms. Also, as mentioned, it is often the
case that one computes using the euclidean version of the theory and only at the very end
performs the inverse Wick rotation to obtain the results in minkowskian time. Thus we will
proceed with the euclidean version of the theory, which is the one used later on in presenting
worldline applications.

We consider

ZE[J ] =

∫
Dx e−SE [x]+

∫
dτJx

SE[x] = lim
β→∞

∫ β/2

−β/2
dτ
(1

2
ẋ2 +

ω2

2
x2 +

g

3!
x3 +

λ

4!
x4
)

(102)

with β →∞. The corrections to the ground state energy can be recognized from

ZE[0] = 〈1〉U = lim
β→∞
〈0|e−βĤ |0〉 = lim

β→∞
e−βE0

=
〈
e−SE,int[x]

〉
U,0

= lim
β→∞

e−β(E
(0)
0 +∆E0) (103)

where the exact energy E0 of the ground state |0〉 differs from the ground state energy of the

harmonic oscillator E
(0)
0 by the term ∆E0 due to the anharmonic potential. The latter can be

computed perturbatively. We consider the first non vanishing corrections only to exemplify the
perturbative expansion with path integrals, and the use of Feynman diagrams.

Let us look first at the case with g = 0 and focus on the first correction in λ

ZE[0] = 〈1〉U =
〈
e−SE,int[x]

〉
U,0

=
〈

(1− SE,int[x] + · · · )
〉
U,0

= 〈1〉U,0 −
λ

4!

∫ β/2

−β/2
dτ 〈x4(τ)〉U,0 + · · ·

= 〈1〉U,0
[
1− λ

4!

∫ β/2

−β/2
dτ 〈x4(τ)〉0 + · · ·

]

= 〈1〉U,0
[
1− λ

4!

[
3×
�

]
+ · · ·

]
. (104)
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In the last line we have used Wick contractions to calculate normalized correlations functions in
the free theory, and then introduced a graphical representation in terms of Feynman diagrams.
In this graphical representation a line denotes a propagator that joins two points in time,
while vertices arising form the interactions are denoted by dots. The correction we computed
contains just one vertex where four lines can enter or exit, corresponding to the power four of
the dynamical variable x(τ) belonging to the interaction under consideration. Recalling the
euclidean propagator, computed in eq. (93),

〈x(τ)x(τ ′)〉0 = GE(τ − τ ′) =
1

2ω
e−ω|τ−τ

′| =

�
τ τ ′ (105)

one immediately finds

�
=

∫ β/2

−β/2
dτ G2

E(0) =
β

4ω2
. (106)

Thus, to this perturbative order one gets

ZE[0] = 〈1〉U,0
[
1− λ

4!

[
3
β

4ω2

]
+ · · ·

]
= 〈1〉U,0 e−

βλ

32ω2
+··· (107)

and comparing with eq. (103) one finds

∆E0 =
1

32

λ

ω2
. (108)

Similarly one may consider the case with g 6= 0 and λ = 0. The first non vanishing correction
is obtained from

ZE[0] = 〈1〉U =
〈(

1− SE,int +
1

2
S2
E,int + · · ·

)〉
U,0

(109)

= 〈1〉U,0 −
g

3!

∫ β
2

−β
2

dτ 〈x3(τ)〉U,0

+
1

2

( g
3!

)2
∫ β

2

−β
2

dτ

∫ β
2

−β
2

dτ ′ 〈x3(τ)x3(τ ′)〉U,0 + · · ·

= 〈1〉U,0
[
1 + 0 +

1

2

( g
3!

)2[
3!×
�

+ 32 ×
�

]
+ · · ·

]
.

Now

�
=

∫ β/2

−β/2
dτ

∫ β/2

−β/2
dτ ′G3

E(τ − τ ′) =
1

8ω3

∫ β/2

−β/2
dτ

∫ ∞
−∞

dσ e−3ω|σ|

=
β

8ω3

2

3ω
(110)
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and

�
=

∫ β/2

−β/2
dτ

∫ β/2

−β/2
dτ ′GE(0)GE(τ − τ ′)GE(0)

=
1

8ω3

∫ β/2

−β/2
dτ

∫ ∞
−∞

dσ e−ω|σ| =
β

8ω3

2

ω
(111)

where the limit β →∞ has been used suitably to calculate the integrals. Therefore

ZE[0] = 〈1〉U,0
[
1 +

1

2

( g
3!

)2(
3!

β

12ω4
+ 32 β

4ω4

)
+ · · ·

]
= 〈1〉U,0 e

β 11
8(3!)2

g2

ω4
+···

(112)

and one finds

∆E0 = − 11

288

g2

ω4
. (113)

6 Path integral for fermions

We now discuss how to extend the path integral method to fermionic systems. Fermions at
the classical level can be described by Grassmann variables, also known as anticommuting
numbers or fermionic variables. Grassmann variables allow to define “classical” models whose
quantization produces degrees of freedom that satisfy the Pauli exclusion principle. Models
with Grassmann variables are often called “pseudoclassical”, as the spin at the classical level
is just a formal construction (the value of any finite spin vanishes for ~ → 0, and thus cannot
be measured classically).

In the following we first exemplify the use of Grassmann variables in mechanical models.
The method extends to field theories as well, so that a Dirac field should really be treated
classically with Grassmann variables. Then we develop canonical quantization for mechanical
models containing Grassmann variables. At last, we derive a path integral representation of the
transition amplitude for fermionic systems starting from its operatorial expression and using a
suitable definition of fermionic coherent states.

6.1 Grassmann algebras

A n-dimensional Grassmann algebra Gn is generated by a set of generators θi with i = 1, ..., n
that satisfy

θiθj + θjθi = 0 (114)

or, equivalently, in terms of the anticommutator

{θi, θj} = 0 . (115)

In particular any fixed generator squares to zero

θ2
i = 0 (116)

suggesting already at the classical level the essence of the Pauli exclusion principle, according
to which one cannot put two identical fermions in the same quantum state. Physicists often
call these generators anticommuting numbers.
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One can multiply these generators and their products by real or complex numbers, and form
polynomials that are used to define functions of the Grassmann variables (i.e. the elements of
the Grassmann algebra). For example, for n = 1 there is only one Grassmann variable θ and
an arbitrary function is given by

f(θ) = f0 + f1θ (117)

where f0 and f1 are taken to be either real or complex numbers. Similarly, for n = 2 one has

f(θ1, θ2) = f0 + f1θ1 + f2θ2 + f3θ1θ2 . (118)

A term with θ2θ1 is not written as it is not independent of θ1θ2, as θ2θ1 = −θ1θ2. Terms with
an even number of θ’s are called Grassmann even (or equivalently: even, commuting, bosonic).
Terms with an odd number of θ’s are called Grassmann odd (or equivalently: odd, anticom-
muting, fermionic). Generic functions are always defined in terms of their Taylor expansions,
which contain a finite number of terms because of the Grassmann property. For example, the
exponential function eθ means just eθ = 1 + θ because θ2 = 0.

Derivatives with respect to Grassmann variables are very simple. As any function can be at
most linear with respect to a fixed Grassmann variable, its derivative is straightforward, and
one has to keep track just of signs. Left derivatives are defined by removing the variable from
the left of its Taylor expansion: for example for the function f(θ1, θ2) given above

∂
L
f(θ1, θ2)

∂θ1

= f1 + f3θ2 (119)

since θ1 is removed from the left. Similarly, right derivatives are obtained by removing the
variable from the right

∂
R
f(θ1, θ2)

∂θ1

= f1 − f3θ2 (120)

where a minus sign emerges because one has first to commute θ1 past θ2. Equivalently, using
Grassmann increments δθ, one may write

δf = δθ
∂
L
f

∂θ
=
∂
R
f

∂θ
δθ (121)

which recall how to keep track of signs. If not specified otherwise, we use left derivatives and
omit the corresponding subscript.

Integration can be defined, according to Berezin, to be identical with differentiation∫
dθ ≡ ∂

L

∂θ
. (122)

This definition has the virtue of producing a translational invariant measure, that is∫
dθf(θ + η) =

∫
dθf(θ) . (123)

This statement is easily proven by a direct calculation∫
dθf(θ + η) =

∫
dθ (f0 + f1θ + f1η) = f1 =

∫
dθf(θ) . (124)
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Thus, by denoting θ̃ = θ + η one could compute∫
dθf(θ + η) =

∫
d(θ + η)f(θ + η) =

∫
dθ̃f(θ̃) (125)

as the measure dθ = d(θ + η) is translational invariant, as proven above.
Grassmann variables can be defined to be either real or complex. A real variable satisfies

θ̄ = θ (126)

with the bar indicating complex conjugation. For products of Grassmann variables the complex
conjugate is defined to include an exchange of their position

θ1θ2 = θ̄2θ̄1 . (127)

Thus the complex conjugate of the product of two real variables is purely imaginary

θ1θ2 = −θ1θ2 . (128)

It is the combination iθ1θ2 that is real, as the complex conjugate of the imaginary unit carries
the additional minus sign to obtain a formally real object

iθ1θ2 = iθ1θ2 . (129)

Complex Grassmann variables η and η̄ can always be decomposed in terms of two real Grass-
mann variables θ1 and θ2 by setting

η =
1√
2

(θ1 + iθ2) , η̄ =
1√
2

(θ1 − iθ2) . (130)

These are the definitions that are most useful for physical applications, since one requires that
real variables become hermitian operators upon quantization.

Having defined integration over Grassmann variables, we consider in more details the gaus-
sian integration, which is at the core of fermonic path integrals. For the case of a single real
Grassmann variable θ the gaussian function is trivial, e−aθ

2
= 1, since θ2 = 0 as θ anticom-

mutes with itself. One needs at least two real Grassmann variables θ1 and θ2 to have a nontrivial
exponential function with an exponent quadratic in Grassmann variables

e−aθ1θ2 = 1− aθ1θ2 (131)

where a is either a real or complex number. With the above definitions the corresponding
“gaussian integral” is computed straghtforwardly∫

dθ1dθ2 e
−aθ1θ2 = a . (132)

Note that there is a precise sign defined by the chosen measure, as
∫
dθ1dθ2 = −

∫
dθ2dθ1.

Defining the antisymmetric 2× 2 matrix Aij by

A =

(
0 a
−a 0

)
, detA = a2 (133)
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one may rewrite the result of the Grassmann gaussian integration as∫
dθ1dθ2 e

− 1
2
θiA

ijθj = det
1
2A . (134)

The square root of the determinant of an antisymmetric matrix A is called the pfaffian, and often
indicated by PfaffA. Indeed the determinant is always positive definite for real antisymmetric
matrices, and its square root is well-defined (by analytic extensions it is also well-defined for
antisymmetric matrices with complex entries). It is easy to see that the above formula extends
to an even number n = 2m of real Grassmann variables, so that one may write in general∫

dnθ e−
1
2
θiA

ijθj = det
1
2A (135)

with the measure normalized as dnθ ≡ dθ1dθ2 . . . dθn. To prove this, one notice that with an
orthogonal transformation one can skew-diagonalize the antisymmetric matrix Aij and put it
in the form 

0 a1

−a1 0
0 a2

−a2 0
.
.

0 am
−am 0


. (136)

The orthogonal transformation leaves the integration measure invariant and thus one gets the

above result with det
1
2A = a1a2 · · · am. A cautionary note: to compute correctly the jacobian

under a change of variables one should recall the definition of the integration in terms of
derivatives (the Berezin integration), and thus find an inverse matrix with respect to the one
associated with an analogous bosonic integral.

In a similar way, one finds that gaussian integration over complex Grassmann variables (ηi,
η̄i) produce a determinant ∫

dnη̄dnη e−η̄iA
ijηj = detA (137)

where the measure is now defined by dnη̄dnη ≡ dη̄1dη1dη̄2dη2 . . . dη̄ndηn.
For applications to dynamical models and subsequent path integral quantization, it is useful

to consider infinite dimensional Grassmann algebras (n→∞). Then one may use Grassmann
valued functions of time, i.e. θi  θ(t). For different values of t one has different generators
of the algebra, so that properties such as θ2(t) = 0 and θ(t1)θ(t2) = −θ(t2)θ(t1) hold. They are
used to introduce interesting mechanical systems at the classical level, that upon quantization
produce systems satisfying the Pauli exclusion principle (and the Fermi-Dirac statistic).

6.2 Pseudoclassical models and canonical quantization

To gain some familiarity with the use of Grassmann numbers as dynamical variables we consider
the fermionic harmonic oscillator, an example that by itself contains the essence of all fermionic
systems.
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Classically, it is described by the function ψ(t) and its complex conjugate ψ̄(t) that take
values in a Grassmann algebra (t denotes the time). The Grassmann property implies generic
relations like ψ(t)ψ(t) = 0, ψ(t)ψ(t′) = −ψ(t′)ψ(t), ψ̇(t)ψ̇(t) = 0, ψ(t)ψ̇(t) = −ψ̇(t)ψ(t), etc.,
where dots denote time derivatives, ψ̇ = d

dt
ψ. These relations can be used in extremizing the

action, testing the presence of symmetries, and so on.
Before introducing the action of the fermionic harmonic oscillator, and gaining some intu-

ition, let us rewrite the action of the usual bosonic harmonic oscillator in phase space by using
complex combinations of the coordinate and momentum (x, p), defined by

a =
1√
2ω

(ωx+ ip) , ā =
1√
2ω

(ωx− ip) . (138)

Up to boundary terms, one finds

S[x, p] =

∫
dt
(
pẋ− 1

2
(p2 + ω2x2)

)
→ S[a, ā] =

∫
dt (iāȧ− ωāa) . (139)

Quantization of the complex variables (a, ā) gives rise to the annhilation/creation operators
(â, â†) that satisfy the algebra [â, â†] = ~ (however we will use mostly ~ = 1). They are used
in the Fock construction of the Hilbert space of the harmonic oscillator, which for convenience
is reviewed later on in sec. 6.3.

The dynamics of the fermionic harmonic oscillator is similarly described by complex Grass-
mann valued functions ψ(t) and ψ̄(t) and fixed by the action

S[ψ, ψ̄] =

∫
dt
(
iψ̄ψ̇ − ωψ̄ψ

)
. (140)

The action is formally real (up to boundary terms), just like its bosonic cousin in (139). The
equations of motion are obtained by extremizing the action, and easily solved

iψ̇ − ωψ = 0 =⇒ ψ(t) = ψ0 e
−iωt (141)

where ψ0 is a suitable initial datum. This equation may be called the Dirac equation in a 0+1
dimensional spacetime, as one may rewrite it as (γ0∂0 + ω)ψ = 0, with γ0 = −i, x0 = t, and ω
playing the role of the Dirac mass3.

Canonical quantization is achieved by considering the hamiltonian structure of the model.
We sketch it first, postponing for a while a proper discussion of the phase space with Grassmann
variables. The momentum π conjugate to ψ is defined by

π ≡ ∂
L
L

∂ψ̇
= −iψ̄ (142)

which shows that the systems is already in a hamiltonian form, the conjugate momenta being
ψ̄ up to a factor. The classical Poisson bracket {π, ψ}

PB
= −1 is rewritten as {ψ, ψ̄}

PB
= −i,

and has the property of being symmetric (this fact will be discussed in a short while).
Quantizing with anticommutators (fermionic system must be treated this way) one obtains

{ψ̂, ψ̂†} = ~ , {ψ̂, ψ̂} = {ψ̂†, ψ̂†} = 0 (143)

3In higher dimensions one may write the Dirac equation as (γµ∂µ +m)ψ=0.
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that is, the classical variables ψ and ψ̄ are promoted to linear operators ψ̂ and ψ̂† satisfying
anticommutation relations that are set to be equal to i~ times the value of the classical Poisson
brackets. Setting ~ = 1 for simplicity, one finds the fermionic creation/annihilation algebra

{ψ̂, ψ̂†} = 1 , {ψ̂, ψ̂} = {ψ̂†, ψ̂†} = 0 (144)

that can be realized in a two dimensional Hilbert space, and with the correct hermiticity
properties. The Hilbert is explicitly constructed à la Fock, considering ψ̂ as destruction operator
and ψ̂† as creation operator4. One starts defining the Fock vacuum |0〉, fixed by the condition
ψ̂|0〉 = 0. A second state is obtained acting with ψ̂†

|1〉 = ψ̂†|0〉 . (145)

No other states can be obtained acting again with the creation operator ψ̂† as (ψ̂†)2 = 0.
Normalizing the Fock vacuum to unity, 〈0|0〉 = 1, with 〈0| = |0〉†, one finds that these two
states are orthonomal

〈m|n〉 = δmn m,n = 0, 1 (146)

and span a two-dimensional Hilbert space, F2 = Span{|0〉, |1〉}. In terms of matrices one
computes matrix elements and finds the realization

ψ̂ −→
(
〈0|ψ̂|0〉 〈0|ψ̂|1〉
〈1|ψ̂|0〉 〈1|ψ̂|1〉

)
=

(
0 〈0|0〉
0 〈1|0〉

)
=

(
0 1
0 0

)
ψ̂† −→

(
〈0|ψ̂†|0〉 〈0|ψ̂†|1〉
〈1|ψ̂†|0〉 〈1|ψ̂†|1〉

)
=

(
〈0|1〉 0
〈1|1〉 0

)
=

(
0 0
1 0

)
. (147)

The Fock vacuum is indeed the ground state of the fermionic oscillator, whose quantum Hamil-
tonian Ĥ = ω(ψ̂†ψ̂ − 1

2
) is obtained from the classical one by choosing a “symmetric” ordering

of the operators upon quantization. Indeed the classical hamiltonian is given by the Legendre
transform

H = ψ̇π − L = ωψ̄ψ =
ω

2
(ψ̄ψ − ψψ̄) . (148)

The last form is a classically equivalent way of writing it, and is the one that is quantized to
resolve the ordering ambiguities

Ĥ =
ω

2
(ψ̂†ψ̂ − ψ̂ψ̂†) = ω

(
ψ̂†ψ̂ − 1

2

)
(149)

where the first relation in (144) has been used. Note also that in the Legendre transform the
order of ψ̇ and π matters, and we have used the one that follows from having defined the
conjugate momentum (142) with left derivatives.

Hamiltonian structure and canonical quantization

Path integrals for fermions can be derived from the canonical formalism, just as in the
bosonic case. For that let us first review the hamiltonian formalism and the canonical quanti-
zation of mechanical systems with Grassmann variables.

The hamiltonian formalism aims at producing equations of motion that are first order
differential equations in time. For a simple bosonic model with phase space coordinates (x, p),
the phase space action is usually written in the form

S[x, p] =

∫
dt
(
pẋ−H(x, p)

)
. (150)

4Their role could also be reversed in fermionic systems, a property not shared by bosonic systems.
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The first term with derivatives (the pẋ term) is called the symplectic term, and fixes the Poisson
bracket structure of phase space. Up to total derivatives it can be written in a more symmetrical
form, with the time derivatives shared equally by x and p

S[x, p] =

∫
dt
(1

2
(pẋ− xṗ)−H(x, p)

)
=

∫
dt
(1

2
za(Ω−1)abż

b −H(z)
)

(151)

where we have denoted collectively the phase space coordinates by za = (z1, z2) = (x, p). The
symplectic term contains the constant invertible matrix

(Ω−1)ab =

(
0 −1
1 0

)
(152)

with inverse

Ωab =

(
0 1
−1 0

)
. (153)

It is an antisymmetric matrix, as a symmetric matrix would give terms in the action that are
total derivatives and can be dropped (they would not modify the equations of motion). It is
used to define the Poisson bracket between two generic phase space functions F and G

{F,G}
PB

=
∂F

∂za
Ωab ∂G

∂zb
. (154)

In particular, one finds for the phase space coordinates

{za, zb}
PB

= Ωab . (155)

This coincides with the standard definitions. The Poisson bracket satisfies the following prop-
erties

{F,G}
PB

= −{G,F}
PB

(antisymmetry)

{F,GH}
PB

= {F,G}
PB
H +G{F,H}

PB
(Leibniz rule) (156)

{F, {G,H}
PB
}
PB

+ {G, {H,F}
PB
}
PB

+ {H, {F,G}
PB
}
PB

= 0 (Jacobi identity) .

These properties make it consistent to adopt the canonical quantization rules of substituting
the fundamental variables za by linear operators ẑa acting on a Hilbert space of physical states,
with commutation relations fixed to be i~ times the value of the classical Poisson brackets

[ẑa, ẑb] = i~Ωab . (157)

This prescription is consistent as both sides satisfy the same algebraic properties, listed in (156)
for the Poisson brackets. More generally, phase space functions F (z) are elevated to operators
F̂ (ẑ) (after fixing ordering ambiguities) with commutation relations that take the form

[F̂ (ẑ), Ĝ(ẑ)] = i~{F,G}
PB

+ higher order terms in ~ . (158)

This set up can be extended to models with Grassmann variables. The basic structure
remains unaltered, but one must take care of signs arising from the anticommuting sector. Let
us show how this is done.
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We denote collectively the phase space coordinates by ZA = (xi, pi, θ
α), with (xi, pi) the

usual Grassmann even phase space variables and θα the Grassmann odd variables. We consider
a phase space action of the form

S[ZA] =

∫
dt

(
1

2
ZA(Ω−1)ABŻ

B −H(Z)

)
(159)

where the symplectic term depends on a constant invertible matrix (Ω−1)AB with inverse ΩAB.
Again this term must be written splitting the time derivatives democratically between all
variables, as in (151). The symplectic term and the hamiltonian are taken to be Grassmann
even (i.e. commuting objects). Then, it is seen that ΩAB is antisymmetric in the sector related
to the bosonic coordinates, and symmetric in the sector belonging to the Grassmann variables
(other off-diagonal entries vanish as the action is taken to be commuting). Thus, denoting the
variables by ZA = (za, θα) with za bosonic and θα fermionic, the matrix ΩAB (as well as its
inverse) has a block diagonal form

ΩAB =

(
Ωab 0
0 Ωαβ

)
(160)

with Ωab antisymmetric and Ωαβ symmetric.
The matrix ΩAB is used to define the Poisson bracket by

{F,G}
PB

=
∂
R
F

∂ZA
ΩAB ∂LG

∂ZB
(161)

where both right and left derivatives are used. In particular one finds

{ZA, ZB}
PB

= ΩAB . (162)

Phase space functions are usually restricted to have a definite Grassmann parity. Given any
such function F , we denote its Grassmann parity by (−1)εF , where εF = 0 if F is Grassmann
even (bosonic function) and εF = 1 if F is Grassmann odd (fermionic function). Then, one finds
that the definition (161) satisfies a graded generalization of the properties in (156), namely

{F,G}
PB

= (−1)εF εG+1{G,F}
PB

{F,GH}
PB

= {F,G}
PB
H + (−1)εF εGG{F,H}

PB
(163)

{F, {G,H}
PB
}
PB

+ (−1)εF (εG+εH){G, {H,F}
PB
}
PB

+ (−1)εH(εF+εG){H, {F,G}
PB
}
PB

= 0 .

The equations of motion are first order in time. They can be derived minimizing the action
and can be expressed in term of the Poisson brackets

ŻA = ΩAB ∂LH

∂ZB
→ ŻA = {ZA, H}

PB
. (164)

These are the Hamilton’s equations of motion.
The properties of the Poisson brackets make it consistent to adopt the canonical quanti-

zation rules, that consist in promoting the phase space coordinates ZA to operators ẐA with
commutation/anticommutation relation fixed by their classical Poisson brackets

[ẐA, ẐB} = i~{ZA, ZB}
PB

= i~ΩAB (165)
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where we have employed the compact notation

[· , ·} =

{
{· , ·} anticommutator if both variables are fermionic

[· , ·] commutator otherwise
(166)

often called “graded commutator”. The graded commutator satisfies identities similar to those
for the Poisson brackets in (163), and makes it consistent to adopt the given quantization rules.

This quick exposition becomes clearer by working through simple examples.

Examples

(i) Single real Grassmann variable ψ (“single Majorana fermion in one dimension”).
Taking as phase space lagrangian

L =
i

2
ψψ̇ −H(ψ) (167)

which is formally real and produces equation of motion of the first order in time, one finds
Ω−1 = i, Ω = −i, and Poisson bracket at equal times {ψ, ψ}

PB
= −i. The dynamical variable

ψ(t) is often called a Majorana fermion in one dimension, as it satisfies the Dirac equation in one
dimension plus a reality condition (akin to the Majorana condition used in four dimensions).
One notices that the only possible Grassmann even hamiltonian is a constant, so that the model
is rather trivial. One verifies in this example that the phase space can be odd dimensional if
Grassmann variables are present. The model is quantized by introducing the hermitian operator
ψ̂ with anticommutator

{ψ̂, ψ̂} = ~ . (168)

The quantum theory is also trivial, as one represents irreducibly this algebra in a one dimen-
sional Hilbert space, with the operator ψ̂ acting as multiplication by the constant

√
~/2. This

Hilbert space has no room for any nontrivial dynamics, as there is only the vacuum state.
(ii) Several real Grassmann variables ψi (“Majorana fermions in one dimension”).

For the case of several real Grassmann variables one may take as phase space lagrangian

L =
i

2
ψiψ̇i −H(ψi) i = 1, ..., n (169)

and one finds (Ω−1)ij = iδij, Ωij = −iδij. The Poisson brackets at equal times read as
{ψi, ψj}

PB
= −iδij. Quantization is obtained by considering the anticommutation relations

{ψ̂i, ψ̂j} = ~δij (170)

which is recognized to be proportional to the Clifford algebra of the gamma matrices, appearing
in the Dirac equation in n euclidean dimensions. Indeed setting ψ̂i =

√
~/2 γi turns the above

anticommutation relations into the Clifford algebra

{γi, γj} = 2δij (171)

which is the defining properties of the gamma matrices of the Dirac equation

(γi∂i +m)Ψ(x) = 0 . (172)

It is known that the algebra (171) is realized on a complex vector space of dimension 2[n
2

], where
[n

2
] indicates the integer part of n

2
. For example, for n = 2 and n = 3 the gamma matrices
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are 2 by 2, for n = 4 and n = 5 the gamma matrices are 4 by 4, for n = 6 and n = 7 the
gamma matrices are 8 by 8, etc.. One concludes that the operators ψ̂i are realised as hermitian
operators in a Hilbert space of dimensions 2[n

2
].

(iii) Complex Grassmann variables ψ and ψ̄ (“single Dirac fermion in one dimension”).
Taking as phase space lagrangian

L = iψ̄ψ̇ −H(ψ, ψ̄) (173)

one finds {ψ, ψ̄}
PB

= −i as the only nontrivial Poisson bracket between the phase space co-

ordinates (ψ, ψ̄). It is quantized by the anticommutator {ψ̂, ψ̂†} = ~, producing a fermionic
annihilation/creation algebra. It is realized in a two dimensional Fock space, as anticipated
earlier while discussing the fermionic harmonic oscillator. This model is equivalent to that with
two real (Majorana) fermions, seen as the real and the imaginary part of the Dirac fermion.
Also, one may straightforwardly consider the theory of a set of several Dirac fermions in one
dimension.

These basic examples can be used to construct explicitly the irreducible representations
of the gamma matrices in arbitrary dimensions, and check their dimensionality as anticipated
above. One proceeds as follows. In even dimensions n = 2m one combines the 2m Majorana
worldline fermions, corresponding to the gamma matrices, into m pairs of worldline Dirac
fermions, that generate a set of m copies of independent, anticommuting creation/annihilation
operators. The latter act on the tensor products of m two-dimensional fermionic Fock spaces,
each one realizing an independent set of fermionic creation/annihilation operators. This gives
a total Hilbert space of 2m dimensions: indeed for each set of creation/annihilation operators a
state can only be empty or filled with the corresponding fermionic excitation. This is in accord
with the assertion given above about the dimensionality of the gamma matrices. Adding an
extra Majorana fermion corresponds to a Clifford algebra in odd dimensions (i.e. 2m + 1
dimensions): the related dimension of the Hilbert space does not change as the last Majorana
fermion can be realized as proportional to the chirality matrix of the 2m dimensional case,
which always exists.

6.3 Coherent states

It is useful to introduce coherent states, an overcomplete basis of vectors for the fermionic Fock
space described previously, for deriving a path integral for fermionic systems. They provide ket
eigenstates of the fermionic operator ψ̂ with Grassmann valued eigenvalues. Together with a
resolution of the identity, they allow to convert the matrix elements of the quantum evolution
operator (transition amplitudes) into a path integral where one sums over Grassmann valued
functions. We first review the construction of bosonic coherent states, used in the theory of the
harmonic oscillator, as a guide on the construction in the fermionic case.

In the theory of the harmonic oscillator one introduces coherent states defined as eigenstates
of the annihilation operator â. Let us recall the algebra of the creation and annihilation
operators â† and â

[â, â†] = 1 , [â, â] = 0 , [â†, â†] = 0 . (174)

It is realized by operators acting on an infinite dimensional Hilbert space, identified with a
Fock space constructed as follows. A complete orthonormal basis of the Fock space is obtained
by starting from the Fock vacuum |0〉, defined by the condition â|0〉 = 0. The other states of
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the basis are obtained by acting with the creation operator â† an arbitrary number of times on
the Fock vacuum |0〉

|0〉 such that â|0〉 = 0

|1〉 = â†|0〉

|2〉 =
â†√

2
|1〉 =

(â†)2

√
2!
|0〉

|3〉 =
â†√

3
|2〉 =

(â†)3

√
3!
|0〉

.....

|n〉 =
â†√
n
|n− 1〉 =

(â†)n√
n!
|0〉

..... (175)

Normalizing the Fock vacuum to unit norm, 〈0|0〉 = 1, where 〈0| = |0〉†, one finds that these
states are orthonomal

〈m|n〉 = δmn m,n = 0, 1, 2, ... . (176)

Now, choosing a complex number a, one builds a coherent state |a〉 defined by

|a〉 = eaâ
†|0〉 . (177)

It is an eigenstate of the annihilation operator â

â|a〉 = a|a〉 . (178)

A way of proving this is by expanding the exponential and viewing |a〉 as an infinite sum with
suitable coefficients of the basis vectors of the Fock space

|a〉 = eaâ
†|0〉

=
(

1 + aâ† +
1

2!
(aâ†)2 +

1

3!
(aâ†)3 + · · ·+ 1

n!
(aâ†)n + · · ·

)
|0〉

= |0〉+ a|1〉+
a2

√
2!
|2〉+

a3

√
3!
|3〉+ · · ·+ an√

n!
|n〉+ · · · . (179)

In this form it is easy to calculate (using â|n〉 =
√
n|n− 1〉)

â|a〉 = â
(
|0〉+ a|1〉+

a2

√
2!
|2〉+

a3

√
3!
|3〉+ · · ·+ an√

n!
|n〉+ · · ·

)
= 0 + a|0〉+ a2|1〉+

a3

√
2!
|2〉+ · · ·+ an√

(n− 1)!
|n− 1〉+ · · ·

= a
(
|0〉+ a|1〉+

a2

√
2!
|2〉+ · · ·+ an−1√

(n− 1)!
|n− 1〉+ · · ·

)
= a|a〉 . (180)

A quick way of proving the same result is to recognize that the algebra (174) can be realized
by

â† → ā , â → ∂

∂ā
(181)
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acting on functions of ā ∈ C, and the result follows straighfowardly5.
A list of properties that can be proven with similar calculations are

(i) 〈ā| = |a〉† = 〈0|eāâ =⇒ 〈ā|â† = 〈ā|ā
(ii) 〈ā|a〉 = eāa (scalar product)

(iii) 1 =

∫
dāda

2πi
e−āa |a〉〈ā| (resolution of the identity)

(iv) Tr Â =

∫
dāda

2πi
e−āa 〈ā|Â|a〉 (trace of the operator Â) . (182)

One should note that the set of coherent states form an over-complete basis, in particular
they are not orthonormal, in fact 〈b̄|a〉 = eb̄a 6= 0. However, it is useful to keep this redundancy.
Coherent states may be used to rederive a form of the path integral in phase space in terms of
the so-called holomorphic trajectories, corresponding to paths for the a(t) and ā(t) variables.
We will not present it here, but consider only the corresponding fermionic construction which
is, mutatis mutandis, analogous.

Thus, let us introduce coherent states for fermionic systems. As we have seen, the algebra
of the anticommutators of the fermionic creation/annihilation operators ψ̂† and ψ̂ reads as

{ψ̂, ψ̂†} = 1 , {ψ̂, ψ̂} = 0 , {ψ̂†, ψ̂†} = 0 (183)

and can be realized by 2 × 2 matrices acting in the two-dimensional fermionic Fock space
generated by the vectors |0〉 and |1〉, defined by

ψ̂|0〉 = 0 , |1〉 = ψ̂†|0〉 . (184)

One defines fermionic coherent states as eigenstates |ψ〉 of the annihilation operator ψ̂,
having the complex Grassmann number ψ as eigenvalue

ψ̂|ψ〉 = ψ|ψ〉 . (185)

The Grassmann numbers, such as ψ and its complex conjugate ψ̄, anticommute between them-
selves, and we define them to anticommute also with the fermionic operators ψ̂† and ψ̂. No
confusion should arise between the operators ψ̂ and ψ̂† that have a hat, and the complex
Grassmann variables ψ and ψ̄, eigenvalues of the eigenstates |ψ〉 and 〈ψ̄| respectively, that
carry no hat (similarly, in the previous chapter, we indicated position operator, eigenstates and
eigenvalues so that x̂|x〉 = x|x〉).

One can prove the following statements

(i) |ψ〉 = eψ̂
†ψ|0〉

(ii) 〈ψ̄| = 〈0|eψ̄ψ̂ =⇒ 〈ψ̄|ψ̂† = 〈ψ̄|ψ̄

(iii) 〈ψ̄|ψ〉 = eψ̄ψ

(iv) 1 =

∫
dψ̄dψ e−ψ̄ψ |ψ〉〈ψ̄|

(v) Tr Â =

∫
dψ̄dψ e−ψ̄ψ 〈−ψ̄|Â|ψ〉

(vi) STr Â ≡ Tr[(−1)F̂ Â] =

∫
dψ̄dψ e−ψ̄ψ 〈ψ̄|Â|ψ〉 (186)

5 One represents |a〉 by |a〉 = eaā and computes â|a〉 = ∂
∂āe

aā = aeaā = a|a〉.
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where Â is an arbitrary bosonic operator, and F̂ = ψ̂†ψ̂ the fermion number operator.
The proofs are obtained by explicit calculation. Let us proceed systematically.
(i) One expands the exponential and write the coherent state as

|ψ〉 = eψ̂
†ψ|0〉

= (1 + ψ̂†ψ)|0〉 = |0〉 − ψψ̂†|0〉
= |0〉 − ψ|1〉 (187)

and computes

ψ̂|ψ〉 = ψ̂eψ̂
†ψ|0〉

= ψ̂
(
|0〉 − ψ|1〉

)
= −ψ̂ψ|1〉 = ψψ̂|1〉 = ψ|0〉 = ψ

(
|0〉 − ψ|1〉

)
= ψ|ψ〉 (188)

which proves that |ψ〉 is a coherent state. Note that terms proportional to ψ2 can be inserted
or eliminated at wish, as they vanish due to Grassmann property ψ2 = 0.

(ii) “Bra” coherent state. To prove this relation it is sufficient to take the hermitian con-
jugate of the ket coherent state |ψ〉. One must remember that the definition of hermitian
conjugate reduces to complex conjugation for Grassmann variables and reverses the positions
of both variables and operators. For example

(ψ̂†ψ)† = ψ̄ψ̂ . (189)

(iii) Scalar product. A direct computation (recalling that ψ2 = 0, ψ̄2 = 0 and ψψ̄ = −ψ̄ψ)
gives

〈ψ̄|ψ〉 =
(
〈0| − 〈1|ψ̄

)(
|0〉 − ψ|1〉

)
= 〈0|0〉+ ψ̄ψ〈1|1〉 = 1 + ψ̄ψ

= eψ̄ψ . (190)

We point out that the Grassmann variables are here defined to commute with the Fock vacuum
|0〉, so that they commute with the coherent states, but anticommute with |1〉 = ψ̂†|0〉 (as they
anticommute with ψ̂†).

(iv) Resolution of the identity. First of all one must recall that the definition of integration
over Grassmann variables makes it identical with differentiation. In particular, we use left
differentiation, that removes the variable from the left (one must pay attention to signs arising
from this operation) ∫

dψ ≡ ∂
L

∂ψ
,

∫
dψ̄ ≡ ∂

L

∂ψ̄
. (191)

Now a direct calculation shows that∫
dψ̄dψ e−ψ̄ψ |ψ〉〈ψ̄| =

∫
dψ̄dψ (1− ψ̄ψ)

(
|0〉 − ψ|1〉

)(
〈0| − 〈1|ψ̄

)
= |0〉〈0|+ |1〉〈1| . (192)
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(v) Trace. Given a bosonic operator Â, that commutes with ψ and ψ̄, one can verify that∫
dψ̄dψ e−ψ̄ψ 〈−ψ̄|Â|ψ〉 =

∫
dψ̄dψ (1− ψ̄ψ)

(
〈0|+ 〈1|ψ̄

)
Â
(
|0〉 − ψ|1〉

)
=

∫
dψ̄dψ (1− ψ̄ψ)

(
〈0|Â|0〉 − ψ̄ψ〈1|Â|1〉+ · · ·

)
= 〈0|Â|0〉+ 〈1|Â|1〉
= Tr Â . (193)

(vi) Supertrace. An analogous calculation gives∫
dψ̄dψ e−ψ̄ψ 〈ψ̄|Â|ψ〉 =

∫
dψ̄dψ (1− ψ̄ψ)

(
〈0| − 〈1|ψ̄

)
Â
(
|0〉 − ψ|1〉

)
=

∫
dψ̄dψ (1− ψ̄ψ)

(
〈0|Â|0〉+ ψ̄ψ〈1|Â|1〉+ · · ·

)
= 〈0|Â|0〉 − 〈1|Â|1〉 = Tr[(−1)F̂ Â]

= STr Â . (194)

Here F̂ = ψ̂†ψ̂ is the fermion number operator (with eigenvalues F = 0 for |0〉 and F = 1 for
|1〉). The last line gives the definition of the supertrace.

The generalization to more fermionic degrees of freedom is straightforward.

6.4 Fermionic path integrals

We now have all the tools to find a path integral representation of the transition amplitude
between coherent states 〈ψ̄f |e−iĤT |ψi〉, where we set ~ = 1 for notational simplicity. We

consider an hamiltonian Ĥ = Ĥ(ψ̂†, ψ̂) written in such a way that all creation operators are
on the left of the annihilation operators, something that is always possible to achieve using the
fundamental anticommutation relations in (183). Note also that for a single pair of fermionic
creation/annihilation operators the most general (bosonic) hamiltonian takes the simple form
Ĥ = ωψ̂†ψ̂ + h0, with ω and h0 real constants.

To turn the transition amplitude into a path integral, one divides the total propagation
time T into N steps of duration ε = T

N
, so that T = Nε. Using N − 1 times the decomposition

of the identity in terms of coherent states, one gets the following equalites

〈ψ̄f |e−iĤT |ψi〉 = 〈ψ̄f | e−iĤεe−iĤε · · · e−iĤε︸ ︷︷ ︸
N times

|ψi〉

= 〈ψ̄f |e−iĤε 1 e−iĤε 1 · · · 1 e−iĤε|ψi〉

=

∫ (N−1∏
k=1

dψ̄kdψk e
−ψ̄kψk

) N∏
k=1

〈ψ̄k|e−iĤε|ψk−1〉 (195)

where we have defined ψ0 ≡ ψi and ψ̄N ≡ ψ̄f . For ε→ 0 one can approximate the elementary
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transition amplitudes as

〈ψ̄k|e−iĤ(ψ̂†,ψ̂)ε|ψk−1〉 = 〈ψ̄k|
(

1− iĤ(ψ̂†, ψ̂)ε+ · · ·
)
|ψk−1〉

= 〈ψ̄k|ψk−1〉 − iε〈ψ̄k|Ĥ(ψ̂†, ψ̂)|ψk−1〉+ · · ·

=
(

1− iεH(ψ̄k, ψk−1) + · · ·
)
〈ψ̄k|ψk−1〉

= e−iεH(ψ̄k,ψk−1)eψ̄kψk−1 . (196)

The substitution Ĥ(ψ̂†, ψ̂)→ H(ψ̄k, ψk−1) follows from the ordering of the hamiltonian specified
previously (ψ̂† on the left and ψ̂ on the right). This allows one to act with the creation operator
on a bra eigenstate, and with the annihilation operator on a ket eigenstate, so that all operators
in the hamitonian gets substituted by the respective eigenvalues, producing a function of these
Grassmann numbers. This way the hamiltonian operator Ĥ(ψ̂†, ψ̂) gets substituted by the
hamiltonian function H(ψ̄k, ψk−1). These approximations are valid for N → ∞, i.e. ε → 0.
Substituting (196) into (195) one finds

〈ψ̄f |e−iĤT |ψi〉 = lim
N→∞

∫ (N−1∏
k=1

dψ̄kdψk e
−ψ̄kψk

)
ei

∑N
k=1[−iψ̄kψk−1−H(ψ̄k,ψk−1)ε]

= lim
N→∞

∫ (N−1∏
k=1

dψ̄kdψk

)
ei

∑N
k=1[iψ̄k

(ψk−ψk−1)

ε
−H(ψ̄k,ψk−1)]ε+ψ̄NψN

=

∫
Dψ̄Dψ ei

∫ T
0 dt[iψ̄ψ̇−H(ψ̄,ψ)]+ψ̄(T )ψ(T ) =

∫
Dψ̄Dψ eiS[ψ̄,ψ] . (197)

This is the path integral for one complex fermionic degree of freedom. We recognize in the
exponent the discretization of the classical action

S[ψ̄, ψ] =

∫ T

0

dt [iψ̄ψ̇ −H(ψ̄, ψ)]− iψ̄(T )ψ(T )

→
N∑
k=1

ε [iψ̄k
(ψk − ψk−1)

ε
−H(ψ̄k, ψk−1)]− iψ̄NψN (198)

where T = Nε is the total propagation time. The discrete values ψk and ψ̄k are those corre-
sponding to the values of the continuous functions evaluated at times t = kε, i.e. ψk = ψ(kε) and
ψ̄k = ψ̄(kε). The last way of writing the amplitude in (197) is symbolic and indicates the formal
sum over all paths ψ̄(t), ψ(t) with boundary conditions ψ(0) = ψ0 ≡ ψi and ψ̄(T ) = ψ̄N ≡ ψ̄f ,
weighed by the exponential of i times the classical action S[ψ̄, ψ]. Note that the action contains
the boundary term −iψ̄(T )ψ(T ). It is essential for formulating a variational principle where
the boundary data are fixed by specifying the initial value of the function ψ(t) and the final
value of the function ψ̄(t) (i.e. ψ(0) = ψi and ψ̄(T ) = ψ̄f ).

Trace

One can now produce a path integral expression for the trace of the transition amplitude
e−iĤT . Using the expression of the trace in the coherent state basis, and the path integral
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representation of the transition amplitude, one finds

Tr[e−iĤT ] =

∫
dψ̄0dψ0 e

−ψ̄0ψ0 〈−ψ̄0|e−iĤT |ψ0〉

= lim
N→∞

∫ (N−1∏
k=0

dψ̄kdψk

)
ei

∑N
k=1[iψ̄k

(ψk−ψk−1)

ε
−H(ψ̄k,ψk−1)]ε

=

∫
A

Dψ̄Dψ eiS[ψ̄,ψ] (199)

where we have identified ψ̄N = −ψ̄0 and ψN = −ψ0, and used that the exponential e−ψ̄0ψ0 from
the trace cancels the boundary term eψ̄NψN . Note that with this identification the path integral
measure can be written also as a sum form 1 to N ,

∏N
k=1 dψ̄kdψk. In the continuum limit one

finds a sum on all antiperiodic paths i.e. with ψ(T ) = −ψ(0) and ψ̄(T ) = −ψ̄(0) (A stands for
antiperiodic boundary conditions). This representation finds obvious applications in statistical
mechanical problems involving fermions.

Supertrace

In a similar way the supertrace is calculated by

STr[e−iĤT ] =

∫
dψ̄0dψ0 e

−ψ̄0ψ0 〈ψ̄0|e−iĤT |ψ0〉

= lim
N→∞

∫ (N−1∏
k=0

dψ̄kdψk

)
ei

∑N
k=1[iψ̄k

(ψk−ψk−1)

ε
−H(ψ̄k,ψk−1)]ε

=

∫
P

Dψ̄Dψ eiS[ψ̄,ψ] (200)

where we have now identified ψ̄N = ψ̄0 and ψN = ψ0. Again the term e−ψ̄0ψ0 from the super-
trace cancels the boundary term eψ̄NψN . In the continuum limit the sum is over all periodic
trajectories defined by the boundary conditions ψ(T ) = ψ(0) and ψ̄(T ) = ψ̄(0) (P stands for
periodic boundary conditions).

To conclude, we have derived the path integral for fermionic systems from the operato-
rial formulation using a time slicing of the total propagation time. Time slicing produces a
discretization of the classical action and defines concretely the meaning of the path integral
once written in the continuum notation (i.e. it provides a regularization). We have discussed
a simple model with one complex degree of freedom ψ(t) and its complex conjugate ψ̄(t) (it
may be called a Dirac fermion in one dimension). The extension to several complex degrees of
freedom is immediate.

6.4.1 Correlation functions

Correlation functions are defined as normalized averages of the dynamical variables. Again,
one may introduce a generating functional by adding sources to the path integral. Using a
hypercondensed notation, denoting all fermionic functions by ψi and corresponding sources by
ηi (also taking values in a Grassmann algebra), one writes down the generating functional of
correlation functions

Z[η] =

∫
Dψ eiS[ψ]+iηiψ

i

. (201)
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As an example, the two-point function is given by

〈ψiψj〉 =

∫
Dψ ψiψj eiS[ψ]∫
Dψ eiS[ψ]

=
1

Z[0]

(1

i

)2 δ2Z[η]

δηiδηj

∣∣∣∣
η=0

. (202)

In a free theory, identified by a quadratic action of the form S[ψ] = −1
2
ψiKijψ

j with Kij

an antisymmetric matrix, one formally computes the path integral with sources by gaussian
integration (after completing squares in terms of ψi+Gijηj and using the transitional invariance
of the measure). The answer takes the form

Z[η] = det
1
2 (Kij) e

− i
2
ηiG

ijηj (203)

where Gij is the inverse of Kij, which is also an antisymmetric matrix. For the two-point
function one finds

〈ψiψj〉 = −iGij (204)

where Gij must be interpreted as a Green function in quantum mechanical applications. To
check the overall normalization one must be careful with signs arising from the anticommuting
character of the Grassmann variables and from the antisymmetric properties of Kij and Gij.

Similar formulae may be written down for complex fermions (they are actually contained in
the above formula as well). As these are useful for the standard treatment of a Dirac fermion,
let us write down the essential formulae

Z[η, η̄] =

∫
Dψ̄Dψ eiS[ψ,ψ̄]+iη̄iψ

i+iψ̄iη
i

〈ψiψ̄j〉 =
1

Z

δ

δη̄i

δ

δηj
Z[η, η̄]

∣∣∣∣
η=η̄=0

(205)

that for a free action
S[ψ, ψ̄] = −ψ̄iKi

jψ
j (206)

produce

Z[η, η̄] = det(Ki
j) e

iη̄iG
i
jη
j

〈ψiψ̄j〉 = −iGi
j (207)

where the value of Z[η, η̄] has been computed by completing squares (using the inverse Gi
j

of Ki
j). Of course, one must take into account the chosen boundary conditions on the path

integral and use the corresponding Green functions Gi
j. The whole set of generating functionals

described in the bosonic case may be introduced here as well, but we leave their derivation as
an exercize.

To conclude, we consider the examples of the fermionic oscillator and the Dirac field. We
identify their two-point functions using the general formula just derived. The fermionic oscil-
lator has classical action (see eq. (140))

S[ψ, ψ̄] =

∫
dt ψ̄(i∂t − ω)ψ (208)

and the path integral is computed by completing squares

Z[η, η̄] =

∫
Dψ̄Dψ eiS[ψ,ψ̄]+i

∫
dt[η̄(t)ψ(t)+ψ̄(t)η(t)]

= N exp

(
i

∫∫
dtdt′ η̄(t)G(t− t′)η(t′)

)
(209)
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where G(t− t′) is the Green function of the operator K ≡ −i∂t + ω

(−i∂t + ω)G(t− t′) = δ(t− t′) (210)

and reads

G(t− t′) =

∫
dp

2π

e−ip(t−t
′)

−p+ ω
=

∫
dp

2π
e−ip(t−t

′) p+ ω

−p2 + ω2 − iε
= iθ(t− t′)e−iω(t−t′) . (211)

The propagator is then found to be

〈ψ(t)ψ̄(t′)〉 = −iG(t− t′) = θ(t− t′)e−iω(t−t′) . (212)

The Dirac field is described by the action

S[ψ, ψ̄] =

∫
d4x

(
−ψ̄(γµ∂µ +m)ψ

)
(213)

and the path integral becomes

Z[η, η̄] =

∫
Dψ̄Dψ eiS[ψ,ψ̄]+i

∫
d4x[η̄(x)ψ(x)+ψ̄(x)η(x)]

= N exp

(
i

∫∫
d4xd4x′ η̄(x)G(x− x′)η(x′)

)
(214)

where G(x− x′) is the Green function of the operator K ≡ γµ∂µ +m = ∂/+m

(∂/+m)G(x− y) = δ(4)(x− y) (215)

and reads

G(x− y) =

∫
d4p

(2π)4
eipµ(xµ−yµ)

−i/p+m

p2 +m2 − iε
. (216)

It is often indicated also by S(x− y) (S for spinor). The two-point function (propagator) then
becomes

〈ψ(x)ψ̄(y)〉 = −iG(x− y) = −
∫

d4p

(2π)4
eipµ(xµ−yµ) /p+ im

p2 +m2 − iε
(217)

which is interpreted as describing a particle propagating from yµ to xµ if x0 > y0, or an
antiparticle propagating from xµ to yµ if y0 > x0.

To conclude, a last remark: a well-known property of perturbation theory written in terms
of Feynman diagram (and related Feynman rules that translate them into equations) states that
fermionic loops carry a minus sign. This is easily seen as arising for the Grassmann character
of the fermionic variables. In a hypercondensed notation the free propagator is denoted by

〈ψiψ̄j〉 = �j i (218)

and considering an interaction of the form Sint = λψ̄iψ
i one finds in connected diagrams

〈S2
int〉c = λ2〈ψ̄iψiψ̄jψj〉c = −λ2〈ψiψ̄j〉〈ψjψ̄i〉 =

	
(219)

where we recognize the propagators forming the loop and the explicit minus sign.
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