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1 Abelian gauge theories and QED

Let us consider the free lagrangian of a Dirac field of mass m

LDirac = −ψγµ∂µψ −mψψ. (1)

It is invariant under symmetry transformations belonging to the U(1) group

ψ(x) → ψ′(x) = eiαψ(x). (2)

These are rigid (or global) transformations as the parameter α is constant (spacetime indepen-
dent).

Let us now see how to extend the symmetry to a local one, i.e. with arbitrary functions
α(x),

ψ(x) → ψ′(x) = eiα(x)ψ(x) (3)

that implies for the Dirac conjugate

ψ(x) → ψ′(x) = e−iα(x)ψ(x). (4)

The mass term in the lagrangian is invariant

mψψ → mψ′ψ′ = mψ e−iα(x)eiα(x)ψ = mψψ, (5)

but the term with the derivative is not invariant

ψγµ∂µψ → ψ′γµ∂µψ
′ = ψ e−iα(x)γµ∂µ(eiα(x)ψ) = ψγµ∂µψ + i ψγµψ ∂µα(x) . (6)

There appears an extra term i ψγµψ ∂µα(x) that vanishes only for constant α(x). The la-
grangian is not invariant, and we have to modify it to achieve gauge invariance (invariance with
arbitrary functions α(x)).

To construct gauge invariant actions it is useful to introduce a formalism based on the
definition of tensors of the gauge group and covariant derivatives. The latter are constructed
in such a way to produce tensors out of tensors.

We say that ψ(x) is a tensor under the gauge group U(1) = {eiα(x)} if it transforms as in
(3). Then ∂µψ(x) is not a tensor, as it transforms in a more complicated way. The covariant
derivative is defined by

Dµ = ∂µ − iAµ(x) (7)
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where Aµ(x) is a vector field that is required to transform under the gauge group, so that the
“tensorial” transformation rule would remain valid

Dµψ(x)→ D′µψ
′(x) = eiα(x)Dµψ(x) (8)

where D′µ = ∂µ − iA′µ(x). A short calculation shows that we must have the following rule

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µα(x). (9)

With the use of the covariant derivative it is simple to obtain a gauge invariant lagrangian out
of (1):

L = −ψγµDµψ −mψψ . (10)

Comment: a “tensor” for the gauge group U(1) is a field ψq(x) that transforms as

ψq(x)→ ψq(x)′ = eiqα(x)ψq(x) (11)

where q ∈ Z is called the “charge” of ψq(x) (it is a tensor of charge q: in mathematical terms q
identifies an irreducible representation of the group U(1)). Then, the general definition of the
covariant derivative is written as

Dµ = ∂µ − iAµ(x)Q (12)

where Q is an operator that measures the charge of the tensor on which it acts. The covariant
derivative has the property that it does not destroy the tensorial character of the object on which
it acts: it generates tensors out of tensors. Indeed, one may verify that

Dµψq(x) = ∂µψq(x)− iqAµ(x)ψq(x) (13)

is again a tensor of charge q (see eq. (8)). Another property of this definition is the validiy of
the Leibniz rule for the covariant derivatives

Dµ(ψq1ψq2) = (Dµψq1)ψq2 + ψq1(Dµψq2). (14)

Therefore, local invariance can be obtained by introducing the new field Aµ(x), recognized
as the potential of the electromagnetic field (the gauge potential). Having introduced a new
field, we have to give it a suitable dynamics, i.e. we have to add a kinetic term for Aµ(x) to
the lagrangian. This term will have to be gauge invariant, because the rest of the Lagrangian
is: the gauge symmetry is the guiding principle for building the action! It is useful to proceed
using tensors. We can calculate the commutator of two covariant derivatives acting on a tensor

[Dµ, Dν ]ψ = −iFµνψ (15)

that defines the quantity Fµν . Since we have only tensorial quantities, the right-hand side must
also be built out of tensor. Thus, we recognize that Fµν is a tensor of charge q = 0, i.e. an
invariant under gauge transformations (to recognize this, just set q = 0 in (11)).

Computing explicitly the left-hand side of (15) we find

Fµν = ∂µAν − ∂νAµ (16)
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easily recognized as the electromagnetic field.
Now, it is immediate to construct a gauge invariant lagrangian with at most two derivatives

on Aµ. It is enough to use as a building block the field strength Fµν , which we know to be
gauge invariant. We have to require also Lorentz invariance (to have a relativistic theory), and
we just find the free Maxwell lagrangian that we write with the standard normalization

LMaxwell = −1

4
FµνF

µν . (17)

Summing all the pieces which are separately gauge invariant (eqs. (10) and (17)) we obtain
the QED lagrangian

LQED = − 1

4e2
FµνF

µν − ψγµDµψ −mψψ (18)

where we have introduced a free multiplicative parameter e−2 to account for a relative weight
between the different terms that are separately gauge invariant.

Let us analyze the terms contained in (18): we redefine Aµ → eAµ (to obtain the standard
nomalization of the free Maxwell action) and recognize that e is the coupling constant (now it
appears in the covariant derivative Dµ = ∂µ − ieAµ(x))

LQED = −1

4
FµνF

µν − ψ(γµ∂µ +m)ψ + ieAµψγ
µψ

= �γ +�
e−

+�e− e−γ (19)

The first term describes the free propagation of the photons, the second term the free propa-
gation of electrons (and positrons), the third term the elementary interaction between photons
and electrons . The constant e represents the coupling constant, identified with the elementary
charge of the electron: the gauge principle has allowed us to derive the interaction between spin
fields 1/2 and 1. Let us summarize the rules of gauge transformations, rescaling for simplicity
also the angle α(x)→ eα(x),

ψ → ψ′ = eieαψ

ψ → ψ′ = e−ieαψ
Aµ → A′µ = Aµ + ∂µα. (20)

When the coupling constant e can be treated perturbatively, the amplitudes for the various
physical processes dictated by QED can be constructed with the Feynman diagrams built with
the elementary vertex in (19). For example, the electron-electron scattering (Möller scattering)
at the lowest order is given by (time runs along the horizontal axis)

�γ

e−

e−

e−

e−

+ �γ

e−

e−

e−

e−
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The electron/positron scattering (Bhabha scattering):

�γ
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e+

e−

e+

+ �
γ

e−

e+

e−

e+

The electron/photon scattering (Compton scattering):
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γ

e−

γ

+ 	e−

e−

γ

e−

γ

Also photon/photon scattering is possible: there is no elementary vertex, but the first pertur-
bative term one can find is given by the graph


e−
e−

e−

e−

γ

γ

γ

γ

together with similar graphs where the external photon lines are attached to the vertices with
different orderings. In general, loop corrections can be divergent and must be cured by renor-
malization. However, for the photon-photon scattering the calculation of the Feynman graph
is finite, and there is no need to renormalize it: this can be seen as a consequence of gauge
invariance.

2 Non-abelian gauge theories and QCD

The procedure for constructing gauge invariant actions can be extended to compact non-abelian
groups. These theories are at the basis of the “Standard Model” of the fundamental interactions.
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2.1 Lie groups

Let us briefly recall some properties of non-abelian Lie groups, keeping in mind the group
SU(N) as an example. An element of the non-abelian Lie group G, which is connected to
the identity, can be parametrized with coordinates αa (the parameters) associated with the
hermitian generators T a. Here is a lost of the main properties:

(i) U = exp(iαaT
a) ∈ G a = 1, .., dim G

(ii) [T a, T b] = ifabcT
c

(iii) tr(T aT b) =
1

2
δab

(iv) fabc = fabdδ
dc antisymmetric tensor

(v) [[T a, T b], T c] + [[T b, T c], T a] + [[T c, T a], T b] = 0

⇒ fabdf
dc
e + f bcdf

da
e + f cadf

db
e = 0

(iv) (T aAdj)
b
c = −ifabc .

Property (i) describes the exponential representation of an arbitrary element of the group con-
nected to the identity. The index a takes as many values as the dimension of the group. An
element of the group is therefore parameterized by the “angles” αa.
Property (ii) is the Lie algebra satisfied by the infinitesimal generators T a. The real constants
fabc are the structure constants, and characterize the group G.
Item (iii) defines a choice for the normalization of the generators in the fundamental represen-
tation, and identifies the so-called “Killing metric ”. This metric is positive definite for compact
Lie groups (such as SU(N)). The normalization chosen here produces the Kronecker delta δab

as the Killing metric for G.
In (iv) we used the Killing metric to raise an index in the structure constants. The fabc sym-
bols are completely antisymmetric in all indices: this property can be deduced by multiplying
the Lie algebra with an additional generator, taking the trace, and using (iii) and the cyclic
property of the trace. The antisymmetry in the indices a and b is obvious from (ii).
Item (v) gives the Jacobi identities.
Item (vi) defines the adjoint representation. It is shown to be a representation of the Lie algebra
by using the Jacobi identities.

2.2 Action with rigid SU(N) symmetry

Let us now consider N free Dirac fields with identical masses m, assembled in column and raw
vectors

ψ =


ψ1

ψ2

.

.
ψN

 ψ =
(
ψ1, ψ2, ., ., ψN

)
. (21)

The free lagrangian is given by

LDirac = −ψγµ∂µψ −mψψ. (22)
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and is invariant under the SU(N) symmetry transformations given

ψ(x) → ψ′(x) = Uψ(x)

ψ(x) → ψ
′
(x) = ψ(x)U † = ψ(x)U−1 (23)

where U ∈ SU(N), and U † = U−1 since U is unitary. These are rigid transformations, as the
αa parameters contained in U = exp(iαaT a) are constant (indices in αa are raised and lowered
with the Killing metric, that coincides with the identity in our conventions).

2.3 Covariant derivative

To make local the SU(N) symmetry it is again convenient to introduce covariant derivatives.
By definition, the covariant derivative when applied to tensors produces new tensors. It is
defined by

Dµ = ∂µ +Wµ(x) (24)

where Wµ(x) is a matrix valued gauge field, also known as the connection (geometrically, it
defines a parallel transport in a certain space). The gauge field Wµ mixes the N Dirac fermions
contained in ψ, and thus is formed by N×N matrices for any µ. It performs infinitesimal group
transformations (to define a sort of parallel transport) and thus can be expanded in terms of
the generators as follows

Wµ(x) = −iW a
µ (x)T a . (25)

This relation defines the gauge fields W a
µ (x), and there are N2− 1 of them for the gauge group

SU(N). From the requirement of covariance

ψ(x) → ψ′(x) = U(x)ψ(x)

Dµψ(x) → D′µψ
′(x) = U(x)Dµψ(x) (26)

one obtains the following transformation rule for the gauge potentials

Wµ(x) → Wµ(x)′ = U(x)Wµ(x)U−1(x) + U(x)∂µU
−1(x) . (27)

Indeed, requiring that D′µψ
′ = UDµψ, one can compute

D′µψ
′ ≡ (∂µ +W ′

µ)ψ′

= UDµψ = U(∂µ +Wµ)ψ = U(∂µ +Wµ)U−1Uψ

= U(∂µ +Wµ)U−1ψ′ = ∂µψ
′ + U [(∂µ +Wµ)U−1]ψ′ (28)

from which we get the above transformation rule for Wµ. To be more precise, as the ψ transform
in the fundamental representation of SU(N), the N representation, the T a contained in the
Wµ of eq. (28) will be the generators in the fundamental representation.

Covariant derivatives do not commute. This fact allows to define the “curvature” tensor (or
“field strength”) the following way

[Dµ, Dν ] = Fµν (29)

so that
Fµν = ∂µWν − ∂νWµ + [Wµ,Wν ] . (30)

It is immediate to check that the field strength transform covariantly as

Fµν → F ′µν = UFµνU
−1 (31)

which follows from the covariance of (29). This is the adjoint representation.
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2.4 Gauge invariant action

It is now simple to construct a gauge invariant lagrangian from (22): it is enough to substitute
derivatives with gauge covariant derivatives (this is also called “minimal coupling”). One
obtains

L1 = −ψ(γµDµ +m)ψ (32)

that depends on the new field Wµ contained in Dµ. Now, one must give a dynamics to Wµ

by using the simplest gauge and Lorentz invariant action with at most two derivatives: the
lagrangian is

L2 =
1

2
tr(FµνF

µν) = −1

4
F a
µνF

µν a . (33)

Now, using a coupling constant g to define a relative weight between the different gauge invariant
pieces one obtains the final lagrangian

L =
1

2g2
tr(FµνF

µν)− ψ(γµDµ +m)ψ (34)

with gauge symmetries recapitulated as follows

ψ(x) → ψ′(x) = U(x)ψ(x)

Wµ(x) → W ′
µ(x) = U(x)Wµ(x)U−1(x) + U(x)∂µU

−1(x) . (35)

Let us report also the infinitesimal transformations. Defining the matrix α ≡ −iαaT a with
αa � 1, we can write an infinitesimal transformation in the form U = e−α = 1 − α + O(α2),
from which we get

δψ = −αψ
δψ = ψα

δWµ = ∂µα + [Wµ, α] = Dµα (36)

where in the last line the covariant derivaties is the one that acts in the adjoint representation.
We can rewrite the action by a field redefinition, Wµ → W̄µ = gWµ, to get the canonical

normalization of the gauge field action. In components

Wµ(x) = −iW a
µ (x)T a

Fµν(x) = −iF a
µν(x)T a

(37)

so that we get
F a
µν = ∂µW

a
ν − ∂νW a

µ + gfabcW b
µW

c
ν (38)

and the complete action takes the form

L = −1

4
F a
µνF

µνa − ψ(γµ(∂µ − igW a
µT

a) +m)ψ . (39)

The infinitesimal gauge transformation are (redefining for commodity the parameters αa →
gαa)

δψ(x) = igαa(x)T aψ(x)

δW a
µ (x) = ∂µα

a(x) + gfabcW b
µ(x)αc(x) = (Dµα(x))a .

(40)
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The first term in the action (39) describes the free propagation of the fields W a
µ (the non-

abelian spin 1 particles) along with cubic and quartic self-interactions. A positive non-definite
Killing metric would result in a term with kinetic energy that is not positive-definite, and this
would not be acceptable: it is necessary to consider compact groups only to satisfy this request.
The second term describes the free propagation of the ψ fields (spin 1/2 particles with non-
abelian charges, i.e. “color” charges) together with their interaction with the gauge field. The
constant g is the coupling constant. It can be treated perturbatively if small enough. The “non-
abelian” or color charge corresponds to the representation of the gauge group chosen for the ψ
fields (in our case we have taken the fundamental representation, but any other representation
could have been chosen). The gauge principle allowed us to derive all the interaction vertices
between fields of spin 1/2 and 1 in terms of the single coupling constant g.

As a consequence of the transformation law (40), or directly from (31), one recognizes that
the field F a

µν transforms in the adjoint representation

δF a
µν = gfabcF b

µνα
c = igαc(T cAdj)

abF b
µν (41)

with the generators in the adjoint representation given by the following matrices

(T cAdj)
ab = −ifabc . (42)

That this is indeed a representation follows from the Jacobi identities. Similarly, the transfor-
mation law of W a

µ can be expressed in terms of the covariant dervative acting on a tensor in
the adjoint representation

δW a
µ = ∂µα

a + gfabcW b
µα

c = ∂µα
a − igW b

µ(T b)acαc = (Dµα)a . (43)

2.5 The action of quantum crodmodynamics (QCD)

The action of quantum chromodynamics is based on the group SU(3) and in addition to the
gluons (the eight particles associated with the W a

µ gauge fields, which are charged as the
index of the adjoint representation appears, the 8 of SU(3)) contains six fermion fields that
transform in the fundamental representation of SU(3) and describe the six known flavors of
quarks q = (u, d, c, s, t, b), i.e. up, down, charm, strange, top, bottom. Each quark flavor is
degenerate, as it transforms in the 3 of SU(3): they are said to be colored (red, green and
blue, in the usual convention) while the absence of color indicates a scalar, like the lagrangian
(the 1 of SU(3)). Of course, the corresponding antiparticles, the antiquarks q̄ = (ū, d̄, c̄, s̄, t̄, b̄),
transform in the conjugate representation, the 3̄ of SU(3).

The eight infinitesimal generators of SU(3) in the fundamental representation are given by
the Gell-Mann matrices λa (which generalize the Pauli matrices σi of SU(2))

T a =
λa

2
a = 1, . . . , 8 (44)
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where

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0


λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 −i
0 0 0
i 0 0


λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 . (45)

These matrices are normalized according the convention

tr(T aT b) =
1

2
δab . (46)

An arbitrary element of the SU(3) group in the fundamental representation is therefore
described by 3× 3 matrices of the form U = exp(−iαa λa

2
). By calculating the Lie algebra one

can find the explicit values of the structure constants that identify the SU(3) group. The QCD
lagrangian is therefore

LQCD = −1

4
F a
µνF

µνa −
6∑

f=1

ψf

(
γµDµ +mf

)
ψf

= −1

4
F a
µνF

µνa −
6∑

f=1

ψf

(
γµ∂µ +mf

)
ψf + i

g
S

2
W a
µ

6∑
f=1

ψfγ
µλaψf (47)

=�g
+�g g

g

g
S +
g

g

g

g

g2
S

+�q +�q q

g

g
S

where the coupling constant is denoted by g
S
, and the index f ∈ (1, 2, · · · , 6) = (u, d, c, s, t, b)

indicates the flavor of the quark. Different flavors of quarks have different masses mf .
The QCD lagrangian also possesses various rigid symmetries in addition to those already

mentioned. A rigid symmetry always present is the U(1) symmetry which rotates all fields of
the quarks by the same phase: the associated conserved charge is the baryon number. It is a
symmetry that is also preserved by the other fundamental interactions.

There are also other U(1) symmetries which rotate the various fermionic fields separately.
They give rise to the conservation laws of the respective fermion numbers (e.g. strangeness S,
charm C, etc ..). These flavor symmetries are exact only for QCD (and QED), but the weak
force violates them. In total there are six U(1) conserved charges, one for each quark flavor,
and the baryon number is a particular linear combination of these six independent charges.

There are also other approximate symmetries of the QCD lagrangian. In the limit in which
some of the quark masses are taken to be identical, there is a rigid additional non-abelian
symmetry. For example, assuming identical the masses for the up and down quarks, mu = md,
one can rotate the fields ψu and ψd with each other with an SU(2) matrix. This rigid SU(2)
symmetry corresponds to the strong isospin, used to group hadrons into families (states of
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quarks bound by the strong force show the phenomenon of color confinement: the bound states
are color singlets, corresponding to the mesons and baryons). An example of these families are:
(i) the isospin doublet of the nucleons (proton and nucleon) composed of three confined up and
down quarks; (ii) the triplet of π mesons, the pions π± and π0, composed of a quark and an
antiquark of the up and down types.

Considering identical the masses for the up, down and strange quarks, mu = md = ms, we
find an even larger symmetry group, the SU(3) flavor group, that mixes the three flavors up,
down and strange. It should not be confused with the color group, also an SU(3). Examples
of multiplets of hadronic particles described by the SU(3) flavor group are:
the meson octet (π±, π0, K±, K0, K̄0, η),
the baryon octet (p, n,Σ±,Σ0,Ξ±,Λ),
the baryon decuplet (∆−,∆0,∆+,∆++,Σ∗±,Σ∗0,Ξ∗±,Ω−).
The existence of these families is understandable from group theory: the 8 and the 10 are
representations of SU(3). Let us consider the mesons in more detail. They consist of a quark-
antiquark pair (qq̄). The quarks q transforms in the 3 of SU(3), with 3 ∼ (u, d, s), while
antiquarks q̄ transforms in the 3̄ of SU(3), with 3̄ ∼ (ū, d̄, s̄). From this it follows that a bound
state (qq̄) must transform in the

3⊗ 3̄ = 1⊕ 8

and therefore both singlet and octets can exist for the mesons.
On the other hand, baryons are bound states of three quarks (qqq), and since under SU(3)

3⊗ 3⊗ 3 = (6⊕ 3̄)⊗ 3 = 10⊕ 8⊕ 8⊕ 1

octets and decuplets can exist for the baryons, as they do.

10


	Abelian gauge theories and QED
	Non-abelian gauge theories and QCD
	Lie groups
	Action with rigid SU(N) symmetry
	Covariant derivative
	Gauge invariant action
	The action of quantum crodmodynamics (QCD)


