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1 Introduction

Gauge theories are building blocks of the standard model of particle physics. Gauge symmetries
arise from the requirement that massless spin one particles, which mediates fundamental forces,
should carry only two independent polarizations, even when described in terms of equations
that are manifestly Lorentz invariant: the photon is conveniently described by Aµ(x) which
has four components, as any four vector, but the physical degrees of freedoms are only two.
The other two degrees of freedom are eliminated by the gauge symmetries. The requirement of
gauge invariance at the interacting level allows to fix in a simple way all possible interactions
consistently with Lorentz invariance. Let us present this method following the construction of
the QED and QCD lagrangians.

2 Abelian gauge theories and QED

Let us consider the free lagrangian of a Dirac field of mass m

LDirac = −ψγµ∂µψ −mψψ. (1)

It is invariant under symmetry transformations belonging to the U(1) group

ψ(x) → ψ′(x) = eiαψ(x) , eiα ∈ U(1) (2)

ψ(x) → ψ′(x) = e−iα ψ(x). (3)

This is a rigid (global) symmetry as the parameter α is constant (spacetime independent).
Let us now see how to extend the symmetry to a local one with arbitrary functions α(x)

ψ(x) → ψ′(x) = eiα(x)ψ(x) (4)

ψ(x) → ψ′(x) = e−iα(x) ψ(x). (5)

The mass term in the lagrangian is invariant

mψψ → mψ′ψ′ = mψ e−iα(x)eiα(x)ψ = mψψ, (6)

but the term with the derivative is not

ψγµ∂µψ → ψ′γµ∂µψ
′ = ψ e−iα(x)γµ∂µ(eiα(x)ψ) = ψγµ∂µψ + i ψγµψ ∂µα(x) . (7)

There is the extra term i ψγµψ ∂µα(x), that vanishes only for constant α(x). The lagrangian is
not invariant, and one has to modify it to achieve gauge invariance, i.e. invariance for arbitrary
functions α(x).
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To construct gauge invariant actions it is useful to introduce a formalism based on the
definition of tensors (of the gauge group) and covariant derivatives. The latter are constructed
in such a way as to produce tensors out of tensors.

We say that ψ(x) is a tensor under the gauge group U(1) = {eiα(x)} if transforms as in
(4). Then ∂µψ(x) is not a tensor, as it transforms in a more complicated way. The covariant
derivative on ψ is defined by

Dµ = ∂µ − iAµ(x) (8)

where Aµ(x) is a vector field that is required to transform under the gauge group in a suitable
way, so that the “tensorial” transformation rule would remain valid

Dµψ(x)→ D′µψ
′(x) = eiα(x)Dµψ(x) (9)

where D′µ = ∂µ − iA′µ(x). A short calculation shows that we must have the following rule

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µα(x). (10)

With covariant derivatives it is simple to obtain a gauge invariant lagrangian out of (1):

L = −ψγµDµψ −mψψ . (11)

Comment: a “tensor” for the gauge group U(1) is more generally defined as a field ψq(x)
that transforms as

ψq(x)→ ψ′q(x) = eiqα(x)ψq(x) (12)

where q ∈ Z is called the “charge” of ψq(x). Thus, ψq(x) is a tensor of charge q: in mathematical
terms q identifies an irreducible representation of the group U(1). Then, the general definition
of covariant derivative is extended to

Dµ = ∂µ − iAµ(x)Q (13)

where Q is an operator that measures the charge of the tensor on which it acts, i.e. it is the
generator of the U(1) group in the same representation of the tensor on which it acts. We
now recognize that the transformation in (5) corresponds to that of a tensor of charge −1. The
covariant derivative has the property that it does not destroy the tensorial character of the object
on which it acts: it generates tensors out of tensors, as one may verify that

Dµψq(x) = ∂µψq(x)− iqAµ(x)ψq(x) (14)

is again a tensor of charge q (like eq. (9) for charge q = 1). Another property of this definition
is the validiy of the Leibniz rule for the covariant derivatives

Dµ(ψq1ψq2) = (Dµψq1)ψq2 + ψq1(Dµψq2). (15)

Thus, local invariance can be obtained by introducing the gauge field Aµ(x), to be recognized
as the potential of the electromagnetic field. Having introduced a new field, we have to give it
a suitable dynamics, i.e. we have to add to the lagrangian a kinetic term for Aµ(x). This term
will have to be gauge invariant, because the rest of the Lagrangian already is: gauge symmetry
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is the guiding principle for building the action. It is useful to proceed using tensors. We can
calculate the commutator of two covariant derivatives acting on the tensor ψ of charge 1

[Dµ, Dν ]ψ = −iFµνψ (16)

that defines the quantity Fµν . Since we have only tensorial quantities, the right-hand side must
also be built out of tensors. We recognize that Fµν is a tensor of charge q = 0, i.e. a quantity
that is invariant under gauge transformations (to recognize this, we set q = 0 in (12)).

Computing explicitly the left-hand side of (16) we find

Fµν = ∂µAν − ∂νAµ (17)

easily recognized as the electromagnetic field.
Now, it is immediate to construct a gauge invariant lagrangian with at most two derivatives

on Aµ. It is enough to use as building block the field strength Fµν , which we know to be gauge
invariant. We have to require also Lorentz invariance to have a relativistic theory, and we find
the free Maxwell lagrangian, that in the standard normalization reads

LMaxwell = −1

4
FµνF

µν . (18)

Summing all the pieces which are separately gauge invariant (i.e. eqs. (11) and (18)) we
obtain the QED lagrangian

LQED = − 1

4e2
FµνF

µν − ψγµDµψ −mψψ (19)

where we have introduced a free multiplicative parameter 1/e2 to account for a relative weight
between the different terms that are separately gauge invariant.

Let us analyze the terms contained in (19). We first redefine Aµ → eAµ (to obtain the
standard nomalization of the free Maxwell action) and recognize that e may be interpreted as
the coupling constant (now it appears in the covariant derivative Dµ = ∂µ − ieAµ(x))

LQED = −1

4
FµνF

µν − ψ(γµ∂µ +m)ψ + ieAµψγ
µψ

= � +� +�. (20)

The first term describes the free propagation of photons, the second one the free propagation
of electrons (and positrons), and the third one the elementary interaction between photons
and electrons. The constant e represents the coupling constant, identified with the elementary
charge of the electron: the gauge principle has allowed us to derive the interaction between
fields of spin 1/2 and 1. Let us summarize again the rules of gauge transformations for the
lagrangian in (20): rescaling for simplicity also the angle α(x)→ eα(x) we have

ψ → ψ′ = eieαψ

ψ → ψ′ = e−ieαψ
Aµ → A′µ = Aµ + ∂µα. (21)
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If the coupling constant e is small enough it can be treated perturbatively, and the ampli-
tudes for the various physical processes described by QED can be associated to the Feynman
diagrams built with the elementary vertex in (20). For example, the electron-electron scattering
(Möller scattering) at the lowest order is given by (time runs along the horizontal axis)

� + �
Other processes are the electron/positron scattering (Bhabha scattering):

� + �
and the electron/photon scattering (Compton scattering):

� + 	
Also photon-photon scattering is possible: there is no elementary vertex, but the first pertur-
bative term to be found is given by the graph



together with similar graphs where the external photon lines are attached to the vertices with
different orderings. In general, loop corrections can be divergent and must be cured by renor-
malization. However, for the photon-photon scattering the calculation of the Feynman graph
is finite, and there is no need to renormalize it. This is a consequence of gauge invariance.
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3 Non-abelian gauge theories and QCD

The procedure for constructing gauge invariant actions can be extended to compact non-abelian
groups.

3.1 Lie groups

Let us briefly recall some properties of non-abelian Lie groups, keeping in mind the group
SU(N) as leading example. An element U of a non-abelian Lie group G, which is connected
to the identity, can be parametrized by coordinates αa (the parameters) associated to the
hermitian generators T a. Here is a list of the main properties:

(i) U = exp(iαaT
a) ∈ G a = 1, .., dim G

(ii) [T a, T b] = ifabcT
c

(iii) tr(T aFT
b
F) =

1

2
δab

(iv) fabc = fabdδ
dc antisymmetric tensor

(v) [[T a, T b], T c] + [[T b, T c], T a] + [[T c, T a], T b] = 0

⇒ fabdf
dc
e + f bcdf

da
e + f cadf

db
e = 0

(iv) (T aAdj)
b
c = −ifabc .

(i) describes the exponential representation of an arbitrary element of the group connected to
the identity. The index a takes as many values as the dimension of the group. An element of
the group is therefore parameterized by the “angles” αa.
(ii) is the Lie algebra satisfied by the infinitesimal generators T a. The real constants fabc are
the structure constants, and characterize the group G.
(iii) defines a choice for the normalization of the generators in the fundamental representation
T aF , also called the defining representation, and identifies the so-called “Killing metric”. This
metric is positive definite for compact Lie groups (such as SU(N)). The normalization chosen
here produces the Kronecker delta δab as the Killing metric for the compact group G.
(iv) uses the Killing metric to raise an index in the structure constants. Then, the symbols fabc

are completely antisymmetric: this property can be deduced by multiplying the Lie algebra
with an additional generator, taking the trace, and using (iii) and the cyclic property of the
trace. The antisymmetry in the indices a and b is obvious from (ii).
(v) gives the Jacobi identities.
(vi) defines the adjoint representation. It is proven to be a representation by using the Jacobi
identities.
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3.2 Action with rigid SU(N) symmetry

Let us now consider N free Dirac fields with identical masses m, assembled in column and raw
vectors

ψ =


ψ1

ψ2

.

.
ψN

 , ψ =
(
ψ1, ψ2, ., ., ψN

)
. (22)

The free lagrangian is given by

LDirac = −ψγµ∂µψ −mψψ (23)

and is invariant under the SU(N) symmetry transformations given by

ψ(x) → ψ′(x) = Uψ(x)

ψ(x) → ψ
′
(x) = ψ(x)U † = ψ(x)U−1 (24)

where U ∈ SU(N), and U † = U−1 since U is unitary. These are rigid transformations, as the
αa parameters contained in U = U(α) = exp(iαaT a) are constant (indices in αa are raised and
lowered with the Killing metric, that coincides with the identity in our conventions).

3.3 Covariant derivative

To make local the SU(N) symmetry it is again convenient to introduce the concept of covari-
ant derivatives. By definition, the covariant derivative when applied to tensors produces new
tensors. To start with, we recall that a tensor ψ(x) in the fundamental representation of the
gauge group SU(N), i.e. the representation that is sometimes indicated by its dimension N , is
a field defined by the transformation

ψ(x) → ψ′(x) = U(x)ψ(x) (25)

where U(x) is a N × N matrix of SU(N) for any spacetime point x. More generally, fields
transforming in any given representation R(U(x)) of the original matrices U(x) are said to be
tensors in the representation R. For example, the field ψ(x) is a tensor in the antifundamental,
i.e. the representation N̄ , and its transformation rule can be written as

ψ(x) → ψ
′
(x) = ψ(x)U−1(x) . (26)

Evidently, the term ψ(x)ψ(x) is a scalar under the gauge transformation. As said, the covariant
derivative acting on tensors produces new tensors. It is defined by

Dµ = ∂µ +Wµ(x) (27)

where Wµ(x) is a matrix valued gauge field, also known as the connection (geometrically, it
defines a parallel transport in a certain space). When applied to the tensor ψ(x), the term
with the gauge field Wµ mixes the N Dirac fermions contained in ψ, and thus is formed by
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N ×N matrices for any µ. It performs infinitesimal group transformations (that defines a sort
of parallel transport) and thus can be expanded in terms of the generators as follows

Wµ(x) = −iW a
µ (x)T a . (28)

This relation defines the gauge fields W a
µ (x), and there are N2− 1 of them for the gauge group

SU(N). From the requirement of covariance

ψ(x) → ψ′(x) = U(x)ψ(x)

Dµψ(x) → D′µψ
′(x) = U(x)Dµψ(x) (29)

one obtains the following transformation rule for the gauge potentials

Wµ(x) → Wµ(x)′ = U(x)Wµ(x)U−1(x) + U(x)∂µU
−1(x) . (30)

Indeed, requiring that D′µψ
′ = UDµψ, one computes

D′µψ
′ ≡ (∂µ +W ′

µ)ψ′

= UDµψ = U(∂µ +Wµ)ψ = U(∂µ +Wµ)U−1Uψ

= U(∂µ +Wµ)U−1ψ′ = ∂µψ
′ + U [(∂µ +Wµ)U−1]ψ′ (31)

and recognizes the above transformation rule for Wµ. To be more precise, as ψ transforms
in the fundamental representation of SU(N), the T a contained in the Wµ of eq. (31) are the
generators in the fundamental representation.

Covariant derivatives do not commute. This fact allows to define the “curvature” tensor (or
“field strength”) the following way

[Dµ, Dν ] = Fµν (32)

so that
Fµν = ∂µWν − ∂νWµ + [Wµ,Wν ] . (33)

It is immediate to check that the field strength transform covariantly as

Fµν → F ′µν = UFµνU
−1 (34)

which follows from the covariance of (32). This rule corresponds to the adjoint representation.

3.4 Gauge invariant action

It is now simple to construct a gauge invariant lagrangian from (23): it is enough to substitute
derivatives with gauge covariant derivatives (this is also called “minimal coupling”). One
obtains

L1 = −ψ(γµDµ +m)ψ (35)

that depends on the new field Wµ contained in Dµ. Now, one must give a dynamics to Wµ

by using the simplest gauge and Lorentz invariant action with at most two derivatives: the
lagrangian is

L2 =
1

2
tr(FµνF

µν) = −1

4
F a
µνF

µνa (36)
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where we used the generators in the fundamental representation normalized by trT aT b = 1
2
δab.

Now, introducing a coupling constant g to define a relative weight between the different gauge
invariant pieces, one obtains the final lagrangian

L =
1

2g2
tr(FµνF

µν)− ψ(γµDµ +m)ψ (37)

with gauge symmetries recapitulated as follows

ψ(x) → ψ′(x) = U(x)ψ(x)

ψ(x) → ψ
′
(x) = ψ(x)U−1(x)

Wµ(x) → W ′
µ(x) = U(x)Wµ(x)U−1(x) + U(x)∂µU

−1(x) .

(38)

Let us report the infinitesimal transformations as well. Defining the matrix α ≡ −iαaT a with
parameters αa � 1, one writes an infinitesimal transformation in the form U = eiαaTa

= e−α =
1− α +O(α2), so that

δψ = −αψ
δψ = ψα

δWµ = ∂µα + [Wµ, α] = Dµα (39)

where in the last line the covariant derivative acts in the adjoint representation. The infinites-
imal form of the gauge transformations will be used when studying the gauge fixing procedure
that is needed to quantize the theory.

We can rewrite the lagrangian by a field redefinition, Wµ → W̄µ = gWµ, to get the canonical
normalization for the gauge field. In components

Wµ(x) = −iW a
µ (x)T a

Fµν(x) = −iF a
µν(x)T a

(40)

and we get
F a
µν = ∂µW

a
ν − ∂νW a

µ + gfabcW b
µW

c
ν (41)

so that the complete lagrangian takes the form

L = −1

4
F a
µνF

µνa − ψ[γµ(∂µ − igW a
µT

a) +m]ψ . (42)

The infinitesimal gauge transformations, obtained by redefining also the parameters αa → gαa,
now read

δψ(x) = igαa(x)T aψ(x)

δW a
µ (x) = ∂µα

a(x) + gfabcW b
µ(x)αc(x) = Dµα

a(x) .
(43)

The first term in the action (42) describes the free propagation of the fields W a
µ (the non-

abelian spin 1 particles) along with cubic and quartic self-interactions. A positive non-definite
Killing metric would result in a term with kinetic energy that is not positive-definite, and
this would not be acceptable: it is necessary to consider only compact groups to satisfy this
request. The second term describes the free propagation of the ψ fields (spin 1/2 particles
with non-abelian charges, i.e. “color” charges) together with their interaction with the gauge
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field. The constant g is the coupling constant. It can be treated perturbatively if it is small
enough. The “non-abelian” or “color” charge corresponds to the representation of the gauge
group chosen for the ψ fields (in our case we have taken the fundamental representation, but
any other representation could have been chosen as well.). The gauge principle allows to derive
all the interaction vertices between fields of spin 1/2 and 1 in terms of the single coupling
constant g.

As a consequence of the transformation law (43), or directly from (34), one recognizes that
the field F a

µν transforms in the adjoint representation

δF a
µν = gfabcF b

µνα
c = igαc(T cAdj)

abF b
µν (44)

with the generators in the adjoint representation given by

(T cAdj)
ab = −ifabc . (45)

That this defines a representation follows from the Jacobi identities.
The transformation of the field F a

µν may be compared with the transformation of the fermion
field ψ(x) in the first line of (43), which after introducing indices may be written as

δψi(x) = igαa(x)(T a)ijψ
j(x) (46)

with i, j = 1, ..., N , and (T a)ij the generators in the fundamental representation. Similarly, the
transformation rules for the Dirac conjugate field (morally, the complex conjugate field) are as
follows

δψi(x) = igαa(x)(T aF̄ )i
jψj(x) (47)

where T a
F̄

= −T a∗F = −T aTF are the generators in the complex conjugate of the fundamental
represenation (the latter has generators T aF = T a as used above). Thus, one may appreciate
the similarities of the given expressions for tensors in different representations. Let us also
show explicitly that the transformation law of W a

µ can be expressed in terms of the covariant
derivative acting on a tensor in the adjoint representation

δW a
µ = ∂µα

a + gfabcW b
µα

c = ∂µα
a − igW b

µ(T bAdj)
acαc = Dµα

a . (48)

Finally, one may recall that the Jacobi identity for arbitrary operators, once applied to the
covariant derivatives

[Dµ, [Dν , Dλ]] + [Dν , [Dλ, Dµ]] + [Dλ, [Dµ, Dν ]] = 0 , (49)

gives rise to the so-called Bianchi identities for the field strength Fµν

DµFνλ +DνFλµ +DλFµν = 0 . (50)

3.5 The action of quantum crodmodynamics (QCD)

The action of quantum chromodynamics is based on the group SU(3). In addition to the
gluons (the eight particles associated to the gauge field W a

µ , which has an index in the adjoint
representation, and thus belongs to the 8 of SU(3)), the lagrangian contains six fermion fields
ψf corresponding to the six known flavors of quarks, f = (u, d, c, s, t, b), i.e. up, down, charm,
strange, top, bottom. Each quark flavor is degenerate, as it transforms in the 3 of the SU(3)
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gauge group: the quark is said to be colored (with color red, green and blue, in the usual
convention). The absence of color indicates a scalar, like the lagrangian (it correspond to the 1
of SU(3)). Of course, the corresponding antiparticles, the antiquarks (ū, d̄, c̄, s̄, t̄, b̄), transform
in the conjugate representation, the 3̄ of SU(3) (which is the representation of ψf , the Dirac
conjugate of ψf ).

The eight infinitesimal generators of SU(3) in the fundamental representation are given by
the Gell-Mann matrices λa (which generalize the Pauli matrices σi of SU(2))

T a =
λa

2
a = 1, . . . , 8 (51)

where

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0


λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 −i
0 0 0
i 0 0


λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 . (52)

These matrices are normalized according the convention tr(T aT b) = 1
2
δab.

An arbitrary element of the SU(3) group in the fundamental representation is therefore
described by 3 × 3 matrices of the form U = exp(iαa

λa

2
). By calculating the Lie algebra one

finds the explicit values of the structure constants of the SU(3) group. The QCD lagrangian is
therefore

LQCD = −1

4
F a
µνF

µνa −
6∑

f=1

ψf

(
γµDµ +mf

)
ψf

= −1

4
F a
µνF

µνa −
6∑

f=1

ψf

(
γµ∂µ +mf

)
ψf + i

g
S

2
W a
µ

6∑
f=1

ψfγ
µλaψf (53)

=� +�+
+� +�
where the coupling constant is denoted by g

S
, and the index f ∈ (1, 2, · · · , 6) = (u, d, c, s, t, b)

indicates the flavor of the quark. Different flavors of quarks have different masses mf . Note
that to obtain the propagator of the gauge field from the first term, as indicated in the figure,
one must implement a gauge-fixing procedure.

The QCD lagrangian possesses also additional rigid symmetries. A rigid symmetry always
present is the U(1) symmetry which rotates all fields of the quarks by the same phase: the
associated conserved charge is the baryon number. It is a symmetry that is also preserved by
the other fundamental interactions.
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There are also other U(1) symmetries which rotate the various fermionic fields separately.
They give rise to the conservation laws of the respective fermion numbers (e.g. strangeness S,
charm C, etc ..). These flavor symmetries are exact only for QCD (and QED), but the weak
force violates them. In total there are six U(1) independent conserved charges, one for each
quark flavor, and the baryon number is a particular linear combination of these six independent
charges (also the electric charge Q is a linear combination of them: it the one that is gauged
to obtain the electromagnetic couplings).

A summary of these U(1) symmetries is given in the following table, which reports the
various U(1) charges with a standard normalization:

Quarks U D C S T B B Q

u 1 0 0 0 0 0 1
3

2
3

d 0 −1 0 0 0 0 1
3
−1

3

c 0 0 1 0 0 0 1
3

2
3

s 0 0 0 −1 0 0 1
3
−1

3

t 0 0 0 0 1 0 1
3

2
3

b 0 0 0 0 0 −1 1
3
−1

3

note that we have indicated the baryon number by B, and the bottom (or beauty) quantum
number by B. Just to be clear, for each symmetry, each quark flavour transforms with the
charge indicated in the table, for example for the electric charge Q we have

ψf → ψ′f = eiαQfψf . (54)

By looking at the table, one recognizes the following relations

B =
1

3
(U + C + T )− 1

3
(D + S + B)

Q =
2

3
(U + C + T ) +

1

3
(D + S + B) .

(55)

There are also other approximate symmetries of the QCD lagrangian. In the limit in which
some of the quark masses are taken to be identical, there is a rigid additional non-abelian
symmetry. For example, assuming identical the masses for the up and down quarks, mu = md,
one can rotate the fields ψu and ψd with each other with a SU(2) matrix ψu

ψd

 →

 ψ′u

ψ′d

 = U

 ψu

ψd

 U ∈ SU(2) . (56)

This rigid SU(2) symmetry corresponds to the strong isospin ~I, used to group hadrons into
families (states of quarks bound by the strong force show the phenomenon of color confinement:
the bound states are color singlets, corresponding to the mesons and baryons). An example of
these families are: (i) the isospin doublet of the nucleons (proton and nucleon) composed of
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three confined up and down quarks; (ii) the triplet of π mesons, the pions π± and π0, composed
of a quark and an antiquark of the up and down types.

Considering identical the masses for the quarks up, down and strange, mu = md = ms, one
finds an even larger symmetry group, the SU(3) flavor group, that mixes the three flavors up,
down and strange:

ψu

ψd

ψs

 →


ψ′u

ψ′d

ψ′s

 = U


ψu

ψd

ψs

 U ∈ SU(3) . (57)

This SU(3) flavor group is the one used in the static quark model (the “eightfold way” of
Gell-Mann) to take care of the similarities observed between the various hadrons. It should
not be confused with the color group, also an SU(3) group. As already said, color is expected
to confine inside the hadrons and leave composite colorless states. Examples of multiplets of
hadronic particles described by the SU(3) flavor group are:
the meson octet (π±, π0, K±, K0, K̄0, η),
the baryon octet (p, n,Σ±,Σ0,Ξ±,Λ),
the baryon decuplet (∆−,∆0,∆+,∆++,Σ∗±,Σ∗0,Ξ∗±,Ω−).
The existence of these families is understandable from group theory: the 8 and the 10 are
representations of SU(3). Let us consider the mesons in more detail. They consist of a quark-
antiquark pair (qq̄). The quarks q transforms in the 3 of SU(3), with 3 ∼ (u, d, s), while
antiquarks q̄ transforms in the 3̄ of SU(3), with 3̄ ∼ (ū, d̄, s̄). From this it follows that possible
bound states (qq̄) must transform in the

3⊗ 3̄ = 1⊕ 8

and therefore both singlet and octets could in principle exist for the mesons.
On the other hand, baryons are bound states of three quarks (qqq), and since under SU(3)

3⊗ 3⊗ 3 = (6⊕ 3̄)⊗ 3 = 10⊕ 8⊕ 8⊕ 1

octets and decuplets could exist for the baryons, as indeed they do.

A Notes on group theory

A.1 Lie groups and algebras

Given a simple and compact Lie group G, we indicate its elements using the exponential
parametrization U(α) = exp(iαaT

a), where T a are the infinitesimal hermitian generators that
satisfy the Lie algebra

[T a, T b] = ifabcT
c . (58)

In general, considering an irreducible representations R of G, we get an irreducible representa-
tions of its Lie algebra with traceless hermitian matrices T aR

[T aR , T
b
R ] = ifabcT

c
R . (59)

The matrices T aR act on a vector space of dimensions D(R), and thus are D(R)×D(R) matrices.
D(R) is called the dimension of the representation. We will mostly consider SU(N), whose
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most used representations are:
• the fundamental (or defining) representation N , with D(N) = N
• its complex conjugate representation N̄ , with D(N̄) = N
• the adjoint representation Adj, with D(Adj) = N2 − 1.

Given a representation R with generators T aR , the generators of its complex conjugate rep-
resentation R̄ are given by

T aR̄ = −(T aR )∗ (60)

as seen from taking the complex conjugate of the original representation

(exp(iαaT
a
R ))∗ = exp(−iαa(T aR )∗) ≡ exp(iαaT

a
R̄ ) . (61)

The generators are normalized so that in the fundamental representation one has

tr(T aT b) =
1

2
δab (62)

which normalizes the so-called Killing metric γab = 2 tr(T aT b) to γab = δab. This matrix is used
to define scalar products and to raise/lower the indices that label the generators. In particular,
it is used to define the structure constants with all upper indices

fabc = fabdδ
dc (63)

(more generally fabc = fabdγ
dc). This is proven to be totally antisymmetric. The antisymmetry

of fabc is obvious on the first two indices, as seen from the definition of the Lie algebra. Then
using (58) and (62) one can compute

tr([T a, T b]T c) = ifabd tr(T dT c) =
i

2
fabc = tr(T aT bT c)− tr(T bT aT c)

= tr(T cT aT b)− tr(T aT cT b) = −tr([T a, T c]T b) = − i
2
facb

(64)

so that fabc = −facb, which implies complete antisymmetry. In the above manipulations we
have used the cyclic property of the trace.

The structure constants can be used to define the adjoint representation ‘Adj’ by

(T aAdj)
b
c = −ifabc (65)

since the relation
[T aAdj , T

b
Adj ] = ifabcT

c
Adj (66)

reduces to the Jacobi identity and is thus satisfied.
One defines the index T (R) of a representation R by

tr(T aR T
b
R ) = T (R) δab . (67)

with the index of the fundamental representation N normalized by (62) to T (N) = 1
2
.

Casimir operators are operators built from the generators which commute with all the
generators of the group. In particular, the quadratic Casimir operator constructed using the
Killing metric

C2 = T aT bγab = T aT a (68)
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is such an operator. The proof is simple

[C2, T
b] = [T aT a, T b] = T a[T a, T b] + [T a, T b]T a = T aifabcT c + ifabcT cT a

= ifabc(T aT c + T cT a) = 0 (69)

that follows since the structure constants are completely antisymmetric1. Since C2 commutes
with all the generators, it must be proportional to the identity in any given irreducible repre-
sentation. This defines the number C(R), the quadratic Casimir in the irrep R, by

T aR T
a
R = C(R) 1 . (70)

Setting a = b in (67) and summing (i.e. taking the scalar product with the Killing metric) gives
the relation

T (R)D(Adj) = C(R)D(R) . (71)

For the simplest representation one finds

D(N) = D(N̄) = N T (N) = T (N̄) =
1

2
C(N) = C(N̄) =

N2 − 1

2N
(72)

D(Adj) = N2 − 1 T (Adj) = N C(Adj) = N . (73)

Finally, it is useful to recall the concept of invariant tensors. They are defined to be tensors
that remain invariant after group transformations. For example, denoting by ψi the vectors
transforming in the defining representation of SU(N), so that the upper index i is transformed
by the defining matrices U i

j of SU(N), then the Kronecker symbol δij is an invariant tensor

δij → δ′ij = U i
k(U

−1,T )j
lδkl = U i

k(U
∗)j

lδkl = U i
k(U

∗)j
k = δij . (74)

It tells that in combining the representation N with N̄ there appears a scalar

N ⊗ N̄ = 1⊗+ · · · (75)

i.e. one can form the scalar ψiχi out of ψi and χi. Similarly, the completely antisymmetric
tensor with N upper indices, εi1i2...iN , normalized to one, ε12...N = 1, is an invariant tensor

ε′i1i2...iN = εi1i2...iN (76)

known also as the Levi-Civita symbol. Indeed, one computes

εi1i2...iN → ε′i1i2...iN = U i1
j1U

i2
j2 ...U

iN
jN ε

j1j2...jN = (detU)εi1i2...iN (77)

but detU = 1 for SU(N), and the invariant property follows. Same thing for εi1i2...iN .
Other invariant tensors are the generators in any given representation R, which we may

write as (T aR )αβ, where the upper index α belongs to (the vectors of) the representation R and
the lower index β to the conjugate representation R̄ (see note2) This statement follows from

1We have used that [AB,C] = A[B,C] + [A,C]B for arbitrary operators.
2One may recall that given a representation R, one finds that R−1,T , R∗ and R−1,† are also representations.

These four representations acts on vectors vα, vα, v
α̇, vα̇ belonging to the appropriate vector space. For unitary

representations vα̇ ∼ vα and vα̇ ∼ vα.
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the Lie algebra (59) by recognizing that the structure constants fabc give rise to the generators
in the adjoint representation, that transforms the index a in (T aR )αβ. This also means that

R⊗ R̄⊗ Adj = 1⊕ · · · . (78)

Moreover, since the adjoint is a real representation (the fabc are real numbers and thus the
group elements eiαaTa

Adj are real) one may understand that

Adj⊗ Adj = 1⊕ · · · (79)

that matches with the fact that the Killing metric δab is an invariant tensor that can be used
to construct scalar products (more generally the tensor δαβ for the arbitrary representations R
and R̄ is an invariant tensor). Then (78) and (79) imply

R⊗ R̄ = Adj⊕ · · · (80)

which is interpreted by saying that (T aR )αβ are Clebsch-Gordan coefficients: they combine the
tensors in the representation R with those in the representation R̄ to produce a tensor trans-
forming in the adjoint. Said differently, Clebsch-Gordan coefficients are invariant tensors.

Finally, let us define another invariant tensor, the dabc tensor, together with the anomaly
coefficients A(R) by

A(R)dabc =
1

2
tr
(
T aR {T bR , T cR}

)
(81)

where the overall normalization may be fixed by setting A = 1 for the fundamental repre-
sentation. It is totally symmetric and appears in the study of chiral anomalies. The only
simple groups that have a non-vanishing dabc tensor, and therefore a cubic Casimir operator
C3 ∼ dabcT aT bT c, are SU(N) for N ≥ 3 and SO(6).

A.2 Cartan-Weyl basis

It is often useful to rewrite the generators of a Lie algebra in the Cartan-Weyl basis. This is
defined by first finding the maximal number of generators (or independent linear combination
of generators) Hi that commute between themselves

[Hi, Hj] = 0 . (82)

This maximal number is called the rank of the group. They are taken to be hermitian, and they
define the Cartan subalgebra of the Lie algebra. Since they commute, they can be diagonalized
simultaneously in any given representation, and the eigenvalues are called the weights. This
definition generalizes the angular momentum generator J3 of SU(2), which is a group of rank 1.
J3 is the generator that is usually diagonalized in quantum mechanics3. The particular weights
of the adjoint representation are called roots.

The remaining generators are combined in complex combinations so that they correspond
to the roots αi

[Hi, Eα] = αiEα (83)

which can be interpreted by saying that αi are eigenvalues and Eα are eigenvectors (the root α
is a vector with components αi). The generators Eα cannot be hermitian, but rather one has

3Recall the SU(2) algebra: [J3, J±] = ±J± and [J+, J−] = 2J3.
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that E†α = E−α, so that if α is a root then also −α is a root. They generalize the J± angular
momentum operators of SU(2). Finally, one has the remaining structure constants that appear
in calculating

[Eα, Eβ] . (84)

The Jacobi identity can be used to study them, and in particular one finds that

[Eα, E−α] = αiHi . (85)

which also generalizes the SU(2) case.
This basis (and a related one called the Chevalley basis) is very useful in deriving general

properties of Lie algebras, in a close analogy with the theory of angular momentum in quantum
mechanics. In particular, it is useful to prove the complete classification of simple Lie algebras,
due to Killing and Cartan. This classification is often encoded by the Dynkin diagrams of fig.
1. The algebras depicted there correspond to the following compact groups: An = SU(n + 1),
Bn = SO(2n + 1), Cn = Sp(2n), and Dn = SO(2n), where n is the rank. The remaining
algebras G2, F4, E6, E7, E8 correspond to the so-called exceptional groups.

Figure 1: Dynkin diagrams
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