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1 Introduction

Gauge theories are building blocks of the standard model of particle physics. Gauge symme-
tries arise from the requirement that massless spin-one particles, which mediate some of the
fundamental forces of nature, should carry only two independent polarizations even when de-
scribed in terms of equations that are manifestly Lorentz invariant: the photon is conveniently
described by Aµ(x) which has four components as any four-vector, but the expected physical
degrees of freedoms are only two. The other two degrees of freedom are eliminated by the gauge
symmetry. The principle of gauge invariance also fixes in a simple way all possible interactions
mediated by massless particles of spin one in a way consistent with Lorentz invariance. Let
us present this method following the construction of the QED and QCD lagrangians, the main
examples of abelian and non-abelian gauge theories, respectively

2 Abelian gauge theories and QED

Let us first review how, starting from the theory of free electrons described by the free Dirac
equation, one finds the complete QED lagrangian using the gauge invariance principle (and
Lorentz invariance). Let us consider the free lagrangian of a Dirac field of mass m

LDirac = −ψγµ∂µψ −mψψ . (1)

It is invariant under symmetry transformations belonging to the group U(1)

ψ(x) → ψ′(x) = eiαψ(x) , eiα ∈ U(1)

ψ(x) → ψ′(x) = e−iα ψ(x) .
(2)

This is a global symmetry as the parameter α is constant (spacetime independent).
Let us now see how to extend the symmetry to a local one with arbitrary functions α(x)

ψ(x) → ψ′(x) = eiα(x)ψ(x) (3)

ψ(x) → ψ′(x) = e−iα(x) ψ(x) . (4)

The mass term in the lagrangian is already invariant

mψψ → mψ′ψ′ = mψ e−iα(x)eiα(x)ψ = mψψ , (5)

but the term with the derivative is not

ψγµ∂µψ → ψ′γµ∂µψ
′ = ψ e−iα(x)γµ∂µ(eiα(x)ψ) = ψγµ∂µψ + i ψγµψ ∂µα(x) . (6)
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There is an extra term i ψγµψ ∂µα(x) that vanishes only for constant α(x). The lagrangian is
not invariant, and one has to modify it to achieve gauge invariance, i.e. invariance for arbitrary
functions α(x). Note that the term multiplying the derivative of α(x) is the Noether current
associated to the global symmetry (2), namelyJµ = i ψγµψ.

To construct gauge invariant actions it is useful to introduce a formalism based on the
definition of tensors of the gauge group and covariant derivatives. The latter are constructed
in such a way as to produce tensors out of tensors.

We say that ψ(x) is a tensor under the gauge group U(1) = {eiα(x)} if transforms as in
(3). Then ∂µψ(x) is not a tensor, as it transforms in a more complicated way. The covariant
derivative on ψ is defined by

Dµ = ∂µ − iAµ(x) (7)

where Aµ(x) is a vector field that is required to transform under the gauge group in a suitable
way, so that the “tensorial” transformation rule remains valid

Dµψ(x) → D′µψ
′(x) = eiα(x)Dµψ(x) (8)

where D′µ = ∂µ − iA′µ(x). A short calculation shows that we must have the following rule

Aµ(x) → A′µ(x) = Aµ(x) + ∂µα(x). (9)

With covariant derivatives it is simple to obtain a gauge invariant lagrangian from (1):

L = −ψγµDµψ −mψψ . (10)

Comment: a “tensor” for the gauge group U(1) is more generally defined as a field ψq(x)
that transforms as

ψq(x)→ ψ′q(x) = eiqα(x)ψq(x) (11)

where the integer q ∈ Z is called the “charge” of ψq(x). Thus, ψq(x) is a tensor of charge q:
in mathematical terms q identifies an irreducible representation of the group U(1). The general
definition of covariant derivative is extended to

Dµ = ∂µ − iAµ(x)Q (12)

where Q is an operator that measures the charge of the tensor on which it acts, i.e. it is the
generator of the U(1) group in the same representation of the tensor it acts upon. We now
recognize that the transformation in (4) corresponds to that of a tensor of charge −1. The
covariant derivative has the property that it does not destroy the tensorial character of the
object on which it acts: it generates tensors out of tensors. Indeed, one may verify that

Dµψq(x) = ∂µψq(x)− iqAµ(x)ψq(x) (13)

is again a tensor of charge q (like eq. (8) for charge q = 1). Another property of this definition
is the validity of the Leibniz rule for covariant derivatives: product of tensors are again tensors
and one may verify that

Dµ(ψq1ψq2) = (Dµψq1)ψq2 + ψq1(Dµψq2). (14)
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Thus, local invariance is achieved by introducing the gauge field Aµ(x), readily recognized as
the potential of the electromagnetic field. Having introduced a new field, one has to give it a
suitable dynamics by adding to the lagrangian a kinetic term for Aµ(x). This term has to be
gauge invariant, because the rest of the Lagrangian already is: gauge symmetry is the guiding
principle for building the action. It is useful to proceed using tensors. We can calculate the
commutator of two covariant derivatives acting on the tensor ψ of charge 1

[Dµ, Dν ]ψ = −iFµνψ (15)

that defines the quantity Fµν . Since we have only tensorial quantities on the left-hand side, the
right-hand side must also be built out of tensors. We recognize that Fµν is a tensor of charge
q = 0, i.e. a quantity that is invariant under gauge transformations (to see this it is enough to
set q = 0 in eq. (11)). Computing explicitly the left-hand side of (15) one finds

Fµν = ∂µAν − ∂νAµ (16)

readily recognized as the electromagnetic field tensor.
Now, it is immediate to construct a gauge invariant lagrangian with at most two derivatives

on Aµ. It is enough to use as building block the field strength Fµν which is gauge invariant.
One must require also Lorentz invariance to have a relativistic theory, and one is led to the free
Maxwell lagrangian, that in a standard normalization reads

LMaxwell = −1

4
FµνF

µν . (17)

Summing together all the pieces that are separately gauge invariant (i.e. eqs. (10) and (17))
one finds the QED lagrangian

LQED = − 1

4e2
FµνF

µν − ψγµDµψ −mψψ (18)

where a free multiplicative parameter 1/e2 accounts for a relative weight between the different
terms that are separately gauge invariant.

Let us analyze the various terms contained in (18). It is useful to redefine Aµ → eAµ
(to obtain the standard nomalization of the free Maxwell action) and recognize that e is the
coupling constant (now it appears in the covariant derivative Dµ = ∂µ − ieAµ(x))

LQED = −1

4
FµνF

µν − ψ(γµ∂µ +m)ψ + ieAµψγ
µψ

= �γ +�
e−

+�e− e−γ . (19)

The first term describes the free propagation of photons, the second one the free propagation
of electrons, and the third one the elementary interaction between photons and electrons. The
constant e is the coupling constant, identified with the elementary charge of the electron: the
gauge principle has allowed us to discover the interaction between fields of spin 1/2 and 1. Let
us summarize again the rules of gauge transformations for the lagrangian in (19): rescaling for
simplicity also the angle α(x)→ eα(x) we have

ψ → ψ′ = eieαψ

ψ → ψ′ = e−ieαψ
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Aµ → A′µ = Aµ + ∂µα. (20)

If the coupling constant e is small enough it can be treated perturbatively, and the ampli-
tudes for the various physical processes of QED can be associated to the Feynman diagrams
built with the elementary vertex in (19). For example, the electron-electron scattering (Möller
scattering) at the lowest order is given by (time runs along the horizontal axis)

�γ

e−

e−

e−

e−

+ �γ

e−

e−

e−

e−

.

Other processes are the electron/positron scattering (Bhabha scattering)

�γ

e−

e+

e−

e+

+ �
γ

e−

e+

e−

e+

and the electron/photon scattering (Compton scattering)

�e−

e−

γ

e−

γ

+ 	e−

e−

γ

e−

γ

.

Also photon-photon scattering is possible: there is no elementary vertex and the first pertur-
bative term that is found is given by the graph


e−
e−

e−

e−

γ

γ

γ

γ

together with similar graphs where the external photon lines are attached to the vertices with
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different orderings. In general, loop corrections can be divergent and must be cured by renor-
malization. However, for the photon-photon scattering the calculation of the Feynman graph
depicted above is finite, and there is no need to renormalize it. This fact may be interpreted
as a consequence of gauge invariance.

3 Non-abelian gauge theories and QCD

The construction of gauge invariant actions can be extended to compact non-abelian groups.

3.1 Lie groups

Let us briefly recall some properties of non-abelian Lie groups. We consider simple and compact
Lie gropus, having in mind SU(N) as the main example. An element U of a non-abelian Lie
group G can be parametrized by coordinates αa (the parameters) associated to the hermitian
generators T a. Here is a list of the main properties:

(i) U = exp(iαaT
a) ∈ G a = 1, .., dim G

(ii) [T a, T b] = ifabcT
c

(iii) tr(T aFT
b
F) =

1

2
δab

(iv) fabc = fabdδ
dc antisymmetric tensor

(v) [[T a, T b], T c] + [[T b, T c], T a] + [[T c, T a], T b] = 0

⇒ fabdf
dc
e + f bcdf

da
e + f cadf

db
e = 0

(iv) (T aAdj)
b
c = −ifabc .

(i) describes the exponential representation of an arbitrary element U of the group G connected
to the identity, U ∈ G. The index a takes as many values as the dimension of the group.
Therefore, an element of the group is parameterized by the “angles” αa.
(ii) is the Lie algebra satisfied by the hermitian generators T a. The real constants fabc are the
structure constants and characterize the group G.
(iii) defines a choice for the normalization of the generators in the fundamental representation
T aF , also called the defining representation and identifies the so-called “Killing metric”. More
generally, one could define tr(T aFT

b
F) = 1

2
γab with γab the Killing metric that is proved to be

positive definite for compact Lie groups (such as SU(N)). The normalization chosen above
produces the Kronecker delta δab as the Killing metric for the compact group G.
(iv) makes use of the Killing metric to raise an index in the structure constants. Then, the
symbols fabc are completely antisymmetric: this property can be deduced by multiplying the Lie
algebra with an additional generator, taking the trace, and using (iii) and the cyclic property
of the trace. On the other hand, the antisymmetry on the indices a and b is obvious from (ii).
(v) gives the Jacobi identities.
(vi) defines the adjoint representation. It is proven to be a representation by using the Jacobi
identities.
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3.2 Action with rigid SU(N) symmetry

Let us now consider N free Dirac fields with identical masses m, assembled in column and raw
vectors

ψ =


ψ1

ψ2

.

.
ψN

 , ψ =
(
ψ1, ψ2, ., ., ψN

)
(21)

so that the scalar product

ψψ = ψ1ψ
1 + ψ2ψ

2 + · · ·+ ψNψ
N (22)

is an SU(N) invariant. The free lagrangian is given by

LDirac = −ψγµ∂µψ −mψψ (23)

and is invariant under the SU(N) symmetry transformations given by

ψ(x) → ψ′(x) = Uψ(x)

ψ(x) → ψ
′
(x) = ψ(x)U † = ψ(x)U−1 (24)

where U ∈ SU(N), and U † = U−1 since U is unitary. These are global transformations, as the
αa parameters contained in U = U(α) = exp(iαaT a) are constant (indices in αa are raised and
lowered with the Killing metric, that coincides with the identity in our conventions).

3.3 Covariant derivative

To make the SU(N) symmetry local it is again convenient to introduce the concept of covari-
ant derivatives. By definition, the covariant derivative when applied to tensors produces new
tensors. To start with, we recall that a tensor ψ(x) in the fundamental representation of the
gauge group SU(N), i.e. the representation that is sometimes indicated by its dimension N , is
a field defined by the transformation

ψ(x) → ψ′(x) = U(x)ψ(x) (25)

where U(x) is a N × N matrix of SU(N) for any spacetime point x. More generally, fields
transforming in any given representation R(U(x)) of the original matrices U(x) are said to be
tensors in the representation R. For example, the field ψ(x) is a tensor in the antifundamental
representation, usually indicated by N̄ , and its transformation rule is

ψ(x) → ψ
′
(x) = ψ(x)U−1(x) . (26)

Evidently, the term ψ(x)ψ(x) is a scalar under the gauge transformation. As said, the covariant
derivative acting on tensors produces new tensors. It is defined by

Dµ = ∂µ +Wµ(x) (27)

where Wµ(x) is a matrix valued gauge field, also known as the connection (geometrically, it
defines a parallel transport in a certain space). When applied to the tensor ψ(x), the term
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with the gauge field Wµ mixes the N Dirac fermions contained in ψ, and thus is formed by
N ×N matrices for any µ. It performs infinitesimal group transformations (that defines a sort
of parallel transport) and thus can be expanded in terms of the generators as follows

Wµ(x) = −iW a
µ (x)T a . (28)

This relation defines the gauge fields W a
µ (x), and there are N2− 1 of them for the gauge group

SU(N). From the requirement of covariance

ψ(x) → ψ′(x) = U(x)ψ(x)

Dµψ(x) → D′µψ
′(x) = U(x)Dµψ(x) (29)

one obtains the following transformation rule for the gauge potentials

Wµ(x) → W ′
µ(x) = U(x)Wµ(x)U−1(x) + U(x)∂µU

−1(x) . (30)

Indeed, requiring that D′µψ
′ = UDµψ, one computes

D′µψ
′ ≡ (∂µ +W ′

µ)ψ′

= UDµψ = U∂µψ + UWµψ = U∂µ(U−1Uψ) + UWµU
−1Uψ

= U∂µ(U−1ψ′) + UWµU
−1ψ′ = ∂µψ

′ + [UWµU
−1 + U∂µU

−1]ψ′ (31)

and finds the above transformation rule for Wµ. To be more precise, as ψ transforms in the
fundamental representation of SU(N), the T a contained in the Wµ of eq. (31) are the generators
in the fundamental representation.

Covariant derivatives do not commute. This fact allows to define the “curvature” tensor (or
“field strength”) the following way

[Dµ, Dν ]ψ = Fµνψ (32)

so that
Fµν = ∂µWν − ∂νWµ + [Wµ,Wν ] . (33)

It is immediate to check that the field strength transform covariantly as

Fµν → F ′µν = UFµνU
−1 (34)

which follows from the covariance of (32). This rule corresponds to the adjoint representation.

3.4 Gauge invariant action

It is now simple to construct a gauge invariant lagrangian from (23): it is enough to substitute
derivatives with gauge covariant derivatives (this is also called “minimal coupling”). One
obtains

L1 = −ψ(γµDµ +m)ψ (35)

that depends on the new field Wµ contained in Dµ. Now, one must give a dynamics to Wµ

by using the simplest gauge and Lorentz invariant action with at most two derivatives: the
lagrangian is

L2 =
1

2
tr(FµνF

µν) = −1

4
F a
µνF

µνa (36)
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where we used the generators in the fundamental representation normalized by trT aT b = 1
2
δab.

Now, introducing a coupling constant g to define a relative weight between the different gauge
invariant pieces, one obtains the final lagrangian

L =
1

2g2
tr(FµνF

µν)− ψ(γµDµ +m)ψ (37)

with gauge symmetries recapitulated as follows

ψ(x) → ψ′(x) = U(x)ψ(x)

ψ(x) → ψ
′
(x) = ψ(x)U−1(x)

Wµ(x) → W ′
µ(x) = U(x)Wµ(x)U−1(x) + U(x)∂µU

−1(x) .

(38)

Let us report the infinitesimal transformations as well. Defining the matrix α ≡ −iαaT a with
parameters αa � 1, one writes an infinitesimal transformation in the form U = eiαaTa

= e−α =
1− α +O(α2), so that

δψ = −αψ
δψ = ψα

δWµ = ∂µα + [Wµ, α] = Dµα (39)

where in the last line the covariant derivative acts in the adjoint representation. The infinites-
imal form of the gauge transformations will be used when studying the gauge fixing procedure
that is needed to quantize the theory.

We can rewrite the lagrangian by a field redefinition, Wµ → W̄µ = gWµ, to get the canonical
normalization for the gauge field. In components

Wµ(x) = −iW a
µ (x)T a

Fµν(x) = −iF a
µν(x)T a

(40)

and we get
F a
µν = ∂µW

a
ν − ∂νW a

µ + gfabcW b
µW

c
ν (41)

so that the complete lagrangian takes the form

L = −1

4
F a
µνF

µνa − ψ[γµ(∂µ − igW a
µT

a) +m]ψ . (42)

The infinitesimal gauge transformations, obtained by redefining also the parameters αa → gαa,
now read

δψ(x) = igαa(x)T aψ(x)

δW a
µ (x) = ∂µα

a(x) + gfabcW b
µ(x)αc(x) = Dµα

a(x) .
(43)

The first term in the action (42) describes the free propagation of the fields W a
µ (the non-

abelian spin 1 particles) along with cubic and quartic self-interactions. A positive non-definite
Killing metric would result in a term with kinetic energy that is not positive-definite, and
this would not be acceptable: it is necessary to consider only compact groups to satisfy this
request. The second term describes the free propagation of the ψ fields (spin 1/2 particles
with non-abelian charges, i.e. “color” charges) together with their interaction with the gauge
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field. The constant g is the coupling constant. It can be treated perturbatively if it is small
enough. The “non-abelian” or “color” charge corresponds to the representation of the gauge
group chosen for the ψ fields (in our case we have taken the fundamental representation, but
any other representation could have been chosen as well.). The gauge principle allows to derive
all the interaction vertices between fields of spin 1/2 and 1 in terms of the single coupling
constant g.

As a consequence of the transformation law (43), or directly from (34), one recognizes that
the field F a

µν transforms in the adjoint representation

δF a
µν = gfabcF b

µνα
c = igαc(T cAdj)

abF b
µν (44)

with the generators in the adjoint representation given by

(T cAdj)
ab = −ifabc . (45)

That this defines a representation follows from the Jacobi identities.
The transformation of the field F a

µν may be compared with the transformation of the fermion
field ψ(x) in the first line of (43), which after introducing indices may be written as

δψi(x) = igαa(x)(T a)ijψ
j(x) (46)

with i, j = 1, ..., N , and (T a)ij the generators in the fundamental representation. Similarly, the
transformation rules for the Dirac conjugate field (morally, the complex conjugate field) are as
follows

δψi(x) = igαa(x)(T aF̄ )i
jψj(x) (47)

where T a
F̄

= −T a∗F = −T aTF are the generators in the complex conjugate of the fundamental
represenation (the latter has generators T aF = T a as used above). Thus, one may appreciate
the similarities of the given expressions for tensors in different representations. Let us also
show explicitly that the transformation law of W a

µ can be expressed in terms of the covariant
derivative acting on a tensor in the adjoint representation

δW a
µ = ∂µα

a + gfabcW b
µα

c = ∂µα
a − igW b

µ(T bAdj)
acαc = Dµα

a . (48)

Note also that the non-derivative part of this transformation can be as

δW a
µ = igαc(T cAdj)

abW b
µ + · · · (49)

which highlights the tensorial character of this part of the transformation, matching (44).
Finally, one may recall that the Jacobi identity for arbitrary operators, once applied to the

covariant derivatives

[Dµ, [Dν , Dλ]] + [Dν , [Dλ, Dµ]] + [Dλ, [Dµ, Dν ]] = 0 , (50)

gives rise to the so-called Bianchi identities for the field strength Fµν

DµFνλ +DνFλµ +DλFµν = 0 . (51)
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3.5 The action of quantum crodmodynamics (QCD)

The action of quantum chromodynamics is based on the group SU(3). In addition to the
gluons (the eight particles associated to the gauge field W a

µ , which has an index in the adjoint
representation, and thus belongs to the 8 of SU(3)), the lagrangian contains six fermion fields
ψf corresponding to the six known flavors of quarks, f = (u, d, c, s, t, b), i.e. up, down, charm,
strange, top, bottom. Each quark flavor is degenerate, as it transforms in the 3 of the SU(3)
gauge group: the quark is said to be colored (with color red, green and blue, in the usual
convention). The absence of color indicates a scalar, like the lagrangian (it correspond to the 1
of SU(3)). Of course, the corresponding antiparticles, the antiquarks (ū, d̄, c̄, s̄, t̄, b̄), transform
in the conjugate representation, the 3̄ of SU(3) (which is the representation of ψf , the Dirac
conjugate of ψf ).

The eight infinitesimal generators of SU(3) in the fundamental representation are given by
the Gell-Mann matrices λa (which generalize the Pauli matrices σi of SU(2))

T a =
λa

2
a = 1, . . . , 8 (52)

where

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0


λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 −i
0 0 0
i 0 0


λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 . (53)

These matrices are normalized according the convention tr(T aT b) = 1
2
δab.

An arbitrary element of the SU(3) group in the fundamental representation is therefore
described by 3 × 3 matrices of the form U = exp(iαa

λa

2
). By calculating the Lie algebra one

finds the explicit values of the structure constants of the SU(3) group. The QCD lagrangian is
therefore

LQCD = −1

4
F a
µνF

µνa −
6∑

f=1

ψf

(
γµDµ +mf

)
ψf

= −1

4
F a
µνF

µνa −
6∑

f=1

ψf

(
γµ∂µ +mf

)
ψf + i

g
S

2
W a
µ

6∑
f=1

ψfγ
µλaψf (54)

=�g
+�g g

g

g
S +g

g

g

g

g2
S

+�q +�q q

g

g
S

where the coupling constant is denoted by g
S
, and the index f ∈ (1, 2, · · · , 6) = (u, d, c, s, t, b)

indicates the flavor of the quark. Different flavors of quarks have different masses mf . Note
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that to obtain the propagator of the gauge field from the first term, as indicated in the figure,
one must implement a gauge-fixing procedure.

The QCD lagrangian possesses also additional rigid symmetries. A well-known rigid sym-
metry is the U(1) symmetry which rotates all fields of the quarks by the same phase: the
associated conserved charge is the baryon number. It is a symmetry that is also preserved by
the other fundamental interactions.

Other U(1) symmetries rotate the various fermionic fields separately. They give rise to
conservation laws of the respective fermion numbers (e.g. strangeness S, charm C, etc ..).
These flavor symmetries are exact only for QCD (and QED), but the weak force violates them.
In total there are six U(1) independent conserved charges, one for each quark flavor, and the
baryon number is a particular linear combination of these six independent charges. Also the
electric charge Q is a linear combination of them: is the one that is gauged to obtain the
electromagnetic couplings.

A summary of these U(1) symmetries is given in the following table, which reports the
various U(1) charges with a standard normalization:

Quarks U D C S T B B Q

u 1 0 0 0 0 0 1
3

2
3

d 0 −1 0 0 0 0 1
3
−1

3

c 0 0 1 0 0 0 1
3

2
3

s 0 0 0 −1 0 0 1
3
−1

3

t 0 0 0 0 1 0 1
3

2
3

b 0 0 0 0 0 −1 1
3
−1

3

note that we have indicated the baryon number by B, and the bottom (or beauty) quantum
number by B. Just to be clear, for each symmetry, each quark flavour transforms with the
charge indicated in the table, for example for the electric charge Q we have

ψf → ψ′f = eiαQfψf . (55)

By looking at the table, one recognizes the following relations

B =
1

3
(U + C + T )− 1

3
(D + S + B)

Q =
2

3
(U + C + T ) +

1

3
(D + S + B) .

(56)

There are also other approximate symmetries of the QCD lagrangian. In the limit in which
some of the quark masses are taken to be identical, there is a rigid additional non-abelian
symmetry. For example, assuming identical masses for the up and down quarks, mu = md, one
can rotate the fields ψu and ψd with each other with a SU(2) matrix ψu

ψd

 →

 ψ′u

ψ′d

 = U

 ψu

ψd

 U ∈ SU(2) . (57)
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This rigid SU(2) symmetry corresponds to the strong isospin ~I, used to group hadrons into
families (states of quarks bound by the strong force show the phenomenon of color confinement:
the bound states are color singlets, corresponding to the mesons and baryons). Examples of
these families are: (i) the isospin doublet of the nucleons (proton and nucleon) composed of
three confined up and down quarks; (ii) the triplet of π mesons, the pions π± and π0, composed
of a quark and an antiquark of the up and down types.

Considering identical the masses for the quarks up, down, and strange, mu = md = ms, one
finds an even larger symmetry group, the SU(3) flavor group, that mixes the three flavors up,
down and strange:

ψu

ψd

ψs

 →


ψ′u

ψ′d

ψ′s

 = U


ψu

ψd

ψs

 U ∈ SU(3) . (58)

This SU(3) flavor group is the one used in the static quark model (the “eightfold way” of
Gell-Mann) to take care of the similarities observed between the various hadrons. It should
not be confused with the color group, also an SU(3) group. As already said, color is expected
to confine inside the hadrons and leave composite colorless states. Examples of multiplets of
hadronic particles described by the SU(3) flavor group are:
the meson octet (π±, π0, K±, K0, K̄0, η),
the baryon octet (p, n,Σ±,Σ0,Ξ±,Λ),
the baryon decuplet (∆−,∆0,∆+,∆++,Σ∗±,Σ∗0,Ξ∗±,Ω−).
The existence of these families is understandable from group theory: the 8 and the 10 are
representations of SU(3). Let us consider the mesons in more detail. They consist of a quark-
antiquark pair (qq̄). The quarks q transform in the 3 of SU(3), with 3 ∼ (u, d, s), while
antiquarks q̄ transforms in the 3̄ of SU(3), with 3̄ ∼ (ū, d̄, s̄). From this, it follows that possible
bound states (qq̄) must transform in the

3⊗ 3̄ = 1⊕ 8

and therefore both singlet and octets could in principle exist for the mesons.
On the other hand, baryons are bound states of three quarks (qqq), and since under SU(3)

3⊗ 3⊗ 3 = (6⊕ 3̄)⊗ 3 = 10⊕ 8⊕ 8⊕ 1

octets and decuplets could exist for the baryons, as indeed they do.

A Notes on group theory

A.1 Lie groups and algebras

Given a simple and compact Lie group G, we indicate its elements using the exponential
parametrization U(α) = exp(iαaT

a), where T a are the infinitesimal hermitian generators that
satisfy the Lie algebra

[T a, T b] = ifabcT
c . (59)
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In general, considering an irreducible representation R of G, we get an irreducible representation
of its Lie algebra with traceless hermitian matrices T aR

[T aR , T
b
R ] = ifabcT

c
R . (60)

The matrices T aR act on a vector space of dimensions D(R), and thus are D(R)×D(R) matrices.
D(R) is called the dimension of the representation. We will mostly consider SU(N), whose
most used representations are:
• the fundamental (or defining) representation N , with D(N) = N
• its complex conjugate representation N̄ , with D(N̄) = N
• the adjoint representation Adj, with D(Adj) = N2 − 1.

Given a representation R with generators T aR , the generators of its complex conjugate rep-
resentation R̄ are given by

T aR̄ = −(T aR )∗ (61)

as seen from taking the complex conjugate of the original representation

(exp(iαaT
a
R ))∗ = exp(−iαa(T aR )∗) ≡ exp(iαaT

a
R̄ ) . (62)

The generators are normalized so that in the fundamental representation one has

tr(T aT b) =
1

2
δab (63)

which normalizes the so-called Killing metric γab = 2 tr(T aT b) to γab = δab. This matrix is used
to define scalar products and to raise/lower the indices that label the generators. In particular,
it is used to define the structure constants with all upper indices

fabc = fabdδ
dc (64)

(more generally fabc = fabdγ
dc). This is proven to be totally antisymmetric. The antisymmetry

of fabc is obvious on the first two indices, as seen from the definition of the Lie algebra. Then
using (59) and (63) one can compute

tr([T a, T b]T c) = ifabd tr(T dT c) =
i

2
fabc = tr(T aT bT c)− tr(T bT aT c)

= tr(T cT aT b)− tr(T aT cT b) = −tr([T a, T c]T b) = − i
2
facb

(65)

so that fabc = −facb, which implies complete antisymmetry. In the above manipulations, we
have used the cyclic property of the trace.

The structure constants can be used to define the adjoint representation ‘Adj’ by

(T aAdj)
b
c = −ifabc (66)

since the relation
[T aAdj , T

b
Adj ] = ifabcT

c
Adj (67)

reduces to the Jacobi identity and is thus satisfied.
One defines the index T (R) of a representation R by

tr(T aR T
b
R ) = T (R) δab . (68)
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with the index of the fundamental representation N normalized by (63) to T (N) = 1
2
.

Casimir operators are operators built from the generators which commute with all the
generators of the group. In particular, the quadratic Casimir operator that is constructed
using the Killing metric

C2 = T aT bγab = T aT a (69)

is such an operator. The proof is simple

[C2, T
b] = [T aT a, T b] = T a[T a, T b] + [T a, T b]T a = T aifabcT c + ifabcT cT a

= ifabc(T aT c + T cT a) = 0 (70)

that follows since the structure constants are completely antisymmetric1. Since C2 commutes
with all the generators, it must be proportional to the identity in any given irreducible repre-
sentation. This defines the number C(R), the quadratic Casimir in the irrep R, by

T aR T
a
R = C(R) 1 . (71)

Setting a = b in (68) and summing (i.e. taking the scalar product with the Killing metric) gives
the relation

T (R)D(Adj) = C(R)D(R) . (72)

For the simplest representations one finds

D(N) = D(N̄) = N T (N) = T (N̄) =
1

2
C(N) = C(N̄) =

N2 − 1

2N
(73)

D(Adj) = N2 − 1 T (Adj) = N C(Adj) = N . (74)

Finally, it is useful to recall the concept of invariant tensors. They are defined to be tensors
that remain invariant after group transformations. For example, denoting by ψi the vectors
transforming in the defining representation of SU(N), so that the upper index i is transformed
by the defining matrices U i

j of SU(N), then the Kronecker symbol δij is an invariant tensor

δij → δ′ij = U i
k(U

−1,T )j
lδkl = U i

k(U
∗)j

lδkl = U i
k(U

∗)j
k = δij . (75)

It tells that in combining the representation N with N̄ there appears a scalar

N ⊗ N̄ = 1⊗+ · · · (76)

i.e. one can form the scalar ψiχi out of ψi and χi. Similarly, the completely antisymmetric
tensor with N upper indices, εi1i2...iN , normalized to one, ε12...N = 1, is an invariant tensor

ε′i1i2...iN = εi1i2...iN (77)

known also as the Levi-Civita symbol. Indeed, one computes

εi1i2...iN → ε′i1i2...iN = U i1
j1U

i2
j2 ...U

iN
jN ε

j1j2...jN = (detU)εi1i2...iN (78)

but detU = 1 for SU(N), and the invariant property follows. Same thing for εi1i2...iN .

1 We have used that [AB,C] = A[B,C] + [A,C]B for arbitrary operators.
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Other invariant tensors are the generators in any given representation R, which we may
write as (T aR )αβ, where the upper index α belongs to (the vectors of) the representation R and
the lower index β to the conjugate representation R̄ (see note2) This statement follows from
the Lie algebra (60) by recognizing that the structure constants fabc give rise to the generators
in the adjoint representation, that transforms the index a in (T aR )αβ. This also means that

R⊗ R̄⊗ Adj = 1⊕ · · · . (79)

Moreover, since the adjoint is a real representation (the fabc are real numbers and thus the
group elements eiαaTa

Adj are real) one may understand that

Adj⊗ Adj = 1⊕ · · · (80)

that matches with the fact that the Killing metric δab is an invariant tensor that can be used
to construct scalar products (more generally the tensor δαβ for the arbitrary representations R
and R̄ is an invariant tensor). Then (79) and (80) imply

R⊗ R̄ = Adj⊕ · · · (81)

which is interpreted by saying that (T aR )αβ are Clebsch-Gordan coefficients: they combine the
tensors in the representation R with those in the representation R̄ to produce a tensor trans-
forming in the adjoint. Said differently, Clebsch-Gordan coefficients are invariant tensors.

Finally, let us define another invariant tensor, the dabc tensor, together with the anomaly
coefficients A(R) by

A(R)dabc =
1

2
tr
(
T aR {T bR , T cR}

)
(82)

where the overall normalization may be fixed by setting A = 1 for the fundamental repre-
sentation. It is totally symmetric and appears in the study of chiral anomalies. The only
simple groups that have a non-vanishing dabc tensor, and therefore a cubic Casimir operator
C3 ∼ dabcT aT bT c, are SU(N) for N ≥ 3 and SO(6).

A.2 Cartan-Weyl basis

It is often useful to rewrite the generators of a Lie algebra in the Cartan-Weyl basis. This is
defined by first finding the maximal number of generators (or independent linear combination
of generators) Hi that commute between themselves

[Hi, Hj] = 0 . (83)

This maximal number is called the rank of the group. They are taken to be hermitian, and they
define the Cartan subalgebra of the Lie algebra. Since they commute, they can be diagonalized
simultaneously in any given representation, and the eigenvalues are called the weights. This
definition generalizes the angular momentum generator J3 of SU(2), which is a group of rank 1.
J3 is the generator that is usually diagonalized in quantum mechanics3. The particular weights
of the adjoint representation are called roots.

2One may recall that given a representation R, one finds that R−1,T , R∗ and R−1,† are also representations.
These four representations acts on vectors vα, vα, v

α̇, vα̇ belonging to the appropriate vector space. For unitary
representations vα̇ ∼ vα and vα̇ ∼ vα.

3Recall the SU(2) algebra: [J3, J±] = ±J± and [J+, J−] = 2J3.

15



The remaining generators are combined in complex combinations so that they correspond
to the roots αi

[Hi, Eα] = αiEα (84)

which can be interpreted by saying that αi are eigenvalues and Eα are eigenvectors (the root α
is a vector with components αi). The generators Eα cannot be hermitian, but rather one has
that E†α = E−α, so that if α is a root then also −α is a root. They generalize the J± angular
momentum operators of SU(2). Finally, one has the remaining structure constants that appear
in calculating

[Eα, Eβ] . (85)

The Jacobi identity can be used to study them, and in particular one finds that

[Eα, E−α] = αiHi . (86)

which also generalizes the SU(2) case.
This basis (and a related one called the Chevalley basis) is very useful in deriving general

properties of Lie algebras, in a close analogy with the theory of angular momentum in quantum
mechanics. In particular, it is useful to prove the complete classification of simple Lie algebras,
due to Killing and Cartan. This classification is often encoded by the Dynkin diagrams of fig.
1. The algebras depicted there correspond to the following compact groups: An = SU(n + 1),
Bn = SO(2n + 1), Cn = Sp(2n), and Dn = SO(2n), where n is the rank. The remaining
algebras G2, F4, E6, E7, E8 correspond to the so-called exceptional groups.

Figure 1: Dynkin diagrams
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