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1 Introduction

Gauge theories are building blocks of the Standard Model of particle physics. They arise from
the requirement that massless spin-one particles, which mediate some of the fundamental forces
of nature, should carry only two independent polarizations even when described in terms of
equations of motion that are manifestly Lorentz invariant: the photon is conveniently described
by the vector field Aµ(x), which has four components as any four-vector, though the expected
physical degrees of freedoms are only two. The other two degrees of freedom are redundant
and could be eliminated by using the gauge symmetry: one can eliminate them completely by
performing gauge transformations to reach a unitary gauge, such as the Coulomb gauge used
in electrodynamics. However, in such a gauge the Lorentz symmetry is not manifest and it
becomes difficult to exploit its consequences in a useful manner. It is often more convenient to
keep the redundancy associated with the gauge symmetry and maintain the Lorentz invariance
as manifest as possible. Then, the principle of gauge invariance can be used to fix in a simple way
all possible interactions mediated by massless particles of spin one in a way that is consistent
with Lorentz invariance. Here we introduce the principle of gauge invariance, following the
construction of the QED and QCD lagrangians, the main examples of abelian and non-abelian
gauge theories, respectively

2 Abelian gauge theories and QED

Let us first review how starting from the theory of free electrons described by the free Dirac
equation, one finds the complete QED lagrangian using the principle of gauge invariance (and,
of course, the requirement of Lorentz invariance). Let us consider the lagrangian of a free Dirac
field of mass m

LDirac = −ψγµ∂µψ −mψψ (1)

which is consistent with special relativity, i.e. it is Lorentz invariant. It is invariant also under
symmetry transformations belonging to the group U(1)

ψ(x) → ψ′(x) = eiαψ(x) , eiα ∈ U(1)

ψ(x) → ψ′(x) = e−iα ψ(x) .
(2)

This is a global symmetry as the parameter α is constant (spacetime independent).
Let us see how to extend the symmetry to a local one with arbitrary functions α(x)

ψ(x) → ψ′(x) = eiα(x)ψ(x) (3)

ψ(x) → ψ′(x) = e−iα(x) ψ(x) . (4)
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The mass term in the lagrangian is already invariant as the phases cancel out

mψψ → mψ′ψ′ = mψ e−iα(x)eiα(x)ψ = mψψ , (5)

but the term with the derivative is not

ψγµ∂µψ → ψ′γµ∂µψ
′ = ψ e−iα(x)γµ∂µ(eiα(x)ψ) = ψγµ∂µψ + i ψγµψ ∂µα(x) . (6)

There is an extra term that vanishes only for constant α(x). The lagrangian is not invariant,
and one has to modify it to achieve gauge invariance, i.e. invariance for arbitrary functions α(x).
Note also that the term multiplying the derivative of α(x) is the Noether current Jµ = i ψγµψ
associated with the global symmetry (2).

To construct gauge invariant actions it is useful to introduce a formalism based on the defini-
tion of tensors of the gauge group and related covariant derivatives. The latter are constructed
in such a way as to produce tensors out of tensors.

We say that ψ(x) is a tensor under the gauge group U(1) = {eiα(x)} if it transforms as in eq.
(3). Then ∂µψ(x) is not a tensor, as it transforms in a more complicated way. The covariant
derivative on ψ is obtained by introducing a gauge field Aµ (also known as “connection”) and
defining it by

Dµ = ∂µ − iAµ(x) (7)

and requiring Aµ(x) to transform in such a way so that the “tensorial” transformation rule
remains valid

Dµψ(x) → D′µψ
′(x) = eiα(x)Dµψ(x) (8)

where D′µ = ∂µ−iA′µ(x). A short calculation shows that the following transformation rule must
hold

Aµ(x) → A′µ(x) = Aµ(x) + ∂µα(x). (9)

With covariant derivatives, it is simple to obtain a gauge invariant lagrangian from eq. (1):

L = −ψγµDµψ −mψψ . (10)

Comment: a “tensor” for the gauge group U(1) is more generally defined as a field ψq(x)
that transforms as

ψq(x)→ ψ′q(x) = eiqα(x)ψq(x) (11)

where the integer q ∈ Z is called the “charge” of ψq(x). Thus, ψq(x) is a tensor of charge q:
in mathematical terms q identifies an irreducible representation of the group U(1). Then, the
general definition of covariant derivative is extended to

Dµ = ∂µ − iAµ(x)Q (12)

where Q is an operator that measures the charge of the tensor on which it acts, i.e. it is the
generator of the U(1) group in the same representation of the tensor it acts upon. We can
now recognize that the transformation in (4) corresponds to that of a tensor of charge −1. The
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covariant derivative has the property that it does not destroy the tensorial character of the object
on which it acts: it generates tensors out of tensors. Indeed, one may verify that

Dµψq(x) = ∂µψq(x)− iqAµ(x)ψq(x) (13)

is again a tensor of charge q (just like the tensor of charge q = 1 in eq. (8)). Another property of
this definition is the validity of the Leibniz rule for covariant derivatives: as product of tensors
are tensors, one may verify that

Dµ(ψq1ψq2) = (Dµψq1)ψq2 + ψq1(Dµψq2). (14)

We have seen that local invariance is achieved by introducing the gauge field Aµ(x), readily
interpreted as the potential of the electromagnetic field. Having introduced a new field, one
has to give it suitable dynamics by adding to the lagrangian a kinetic term for Aµ(x). This
term has to be gauge invariant, because the rest of the Lagrangian already is: gauge symmetry
is the guiding principle for building the action. It is useful to proceed using tensors. We start
by calculating the commutator of two covariant derivatives acting on the tensor ψ of charge 1

[Dµ, Dν ]ψ = −iFµνψ (15)

that defines the quantity Fµν . Since we have only tensorial quantities on the left-hand side, the
right-hand side must also be built out of tensors. This way we see that Fµν is a tensor of charge
q = 0, i.e. a quantity that is invariant under gauge transformations (i.e. a transformation with
q = 0 in eq. (11)). Computing explicitly the left-hand side of (15) one finds

Fµν = ∂µAν − ∂νAµ (16)

readily interpreted as the electromagnetic field tensor.
Now, it is immediate to construct a gauge invariant lagrangian with at most two derivatives

on Aµ. It is enough to use as a building block the field strength Fµν which is gauge invariant,
and thus makes it easier to construct gauge invariant quantities. One must require also Lorentz
invariance to have a relativistic theory, so that one is led to the free Maxwell lagrangian, which
in a standard normalization reads

LMaxwell = −1

4
FµνF

µν . (17)

Summing together all the pieces that are separately gauge invariant (i.e. eqs. (10) and (17))
one finds the QED lagrangian

LQED = − 1

4e2
FµνF

µν − ψγµDµψ −mψψ (18)

where a free multiplicative parameter 1/e2 accounts for a relative weight between different
terms that are separately gauge invariant.

Let us analyze the various terms contained in (18). It is useful to redefine Aµ → eAµ
(to obtain the standard nomalization of the free Maxwell action) and recognize that e is the
coupling constant (now it appears in the covariant derivative Dµ = ∂µ − ieAµ(x))

LQED = −1

4
FµνF

µν − ψ(γµ∂µ +m)ψ + ieAµψγ
µψ

=

easily recognized as the electromagnetic field.
Now, it is immediate to construct a gauge invariant lagrangian with at most two derivatives

on Aµ. It is enough to use as a building block the field strength Fµ⌫ , which we know to be
gauge invariant. We have to require also Lorentz invariance (to have a relativistic theory), and
we just find the free Maxwell lagrangian that we write with the standard normalization

LMaxwell = �1

4
Fµ⌫F

µ⌫ . (17)

Summing all the pieces which are separately gauge invariant (eqs. (10) and (17)) we obtain
the QED lagrangian

LQED = � 1

4e2
Fµ⌫F

µ⌫ �  �µDµ � m  (18)

where we have introduced a free multiplicative parameter e�2 to account for a relative weight
between the di↵erent terms that are separately gauge invariant.

Let us analyze the terms contained in (18): we redefine Aµ ! eAµ (to obtain the standard
nomalization of the free Maxwell action) and recognize that e is the coupling constant (now it
appears in the covariant derivative Dµ = @µ � ieAµ(x))

LQED = �1

4
Fµ⌫F

µ⌫ �  (�µ@µ + m) + ieAµ �
µ 

=
�

+
e�

+
e�

e�

�

(19)

The first term describes the free propagation of the photons, the second term the free propa-
gation of electrons (and positrons), the third term the elementary interaction between photons
and electrons . The constant e represents the coupling constant, identified with the elementary
charge of the electron: the gauge principle has allowed us to derive the interaction between spin
fields 1/2 and 1. Let us summarize the rules of gauge transformations, rescaling for simplicity
also the angle ↵(x) ! e↵(x),

 !  0 = eie↵ 

 !  0 = e�ie↵ 
Aµ ! A0

µ = Aµ + @µ↵. (20)

When the coupling constant e can be treated perturbatively, the amplitudes for the various
physical processes dictated by QED can be constructed with the Feynman diagrams built with
the elementary vertex in (19). For example, the electron-electron scattering (Möller scattering)
at the lowest order is given by (time runs along the horizontal axis)

�

e�

e�

e�

e�

+ �

e�

e�

e�

e�

3

. (19)
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The first term describes the free propagation of photons, the second one the free propagation
of electrons, and the third one the elementary interaction between photons and electrons. The
constant e is the coupling constant, identified with the elementary charge of the electron: the
gauge principle has allowed us to discover the interaction between fields of spin 1/2 and 1. Let
us summarize again the rules of gauge transformations for the lagrangian in (19): rescaling for
simplicity also the angle α(x)→ eα(x) we have

ψ → ψ′ = eieαψ

ψ → ψ′ = e−ieαψ

Aµ → A′µ = Aµ + ∂µα.

(20)

If the coupling constant e is small enough it can be treated perturbatively, and the ampli-
tudes for the various physical processes in QED can be associated to the Feynman diagrams
built with the elementary vertex in (19). For example, the electron-electron scattering (Möller
scattering) at the lowest order is given by

easily recognized as the electromagnetic field.
Now, it is immediate to construct a gauge invariant lagrangian with at most two derivatives

on Aµ. It is enough to use as a building block the field strength Fµ⌫ , which we know to be
gauge invariant. We have to require also Lorentz invariance (to have a relativistic theory), and
we just find the free Maxwell lagrangian that we write with the standard normalization

LMaxwell = �1

4
Fµ⌫F

µ⌫ . (17)

Summing all the pieces which are separately gauge invariant (eqs. (10) and (17)) we obtain
the QED lagrangian

LQED = � 1

4e2
Fµ⌫F

µ⌫ �  �µDµ � m  (18)

where we have introduced a free multiplicative parameter e�2 to account for a relative weight
between the di↵erent terms that are separately gauge invariant.

Let us analyze the terms contained in (18): we redefine Aµ ! eAµ (to obtain the standard
nomalization of the free Maxwell action) and recognize that e is the coupling constant (now it
appears in the covariant derivative Dµ = @µ � ieAµ(x))

LQED = �1

4
Fµ⌫F

µ⌫ �  (�µ@µ + m) + ieAµ �
µ 

=
�

+
e�

+
e�

e�

�

(19)

The first term describes the free propagation of the photons, the second term the free propa-
gation of electrons (and positrons), the third term the elementary interaction between photons
and electrons . The constant e represents the coupling constant, identified with the elementary
charge of the electron: the gauge principle has allowed us to derive the interaction between spin
fields 1/2 and 1. Let us summarize the rules of gauge transformations, rescaling for simplicity
also the angle ↵(x) ! e↵(x),

 !  0 = eie↵ 

 !  0 = e�ie↵ 
Aµ ! A0

µ = Aµ + @µ↵. (20)

When the coupling constant e can be treated perturbatively, the amplitudes for the various
physical processes dictated by QED can be constructed with the Feynman diagrams built with
the elementary vertex in (19). For example, the electron-electron scattering (Möller scattering)
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where time runs along the horizontal axis in our Feynman diagrams.

Other processes are the electron-positron scattering (Bhabha scattering)The electron/positron scattering (Bhabha scattering):
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The electron/photon scattering (Compton scattering):
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Also photon/photon scattering is possible: there is no elementary vertex, but the first pertur-
bative term one can find is given by the graph

e�

e�

e�

e�

�

�

�

�

together with similar graphs where the external photon lines are attached to the vertices with
di↵erent orderings. In general, loop corrections can be divergent and must be cured by renor-
malization. However, for the photon-photon scattering the calculation of the Feynman graph
is finite, and there is no need to renormalize it: this can be seen as a consequence of gauge
invariance.

2 Non-abelian gauge theories and QCD

The procedure for constructing gauge invariant actions can be extended to compact non-abelian
groups. These theories are at the basis of the “Standard Model” of the fundamental interactions.
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bative term that one finds is given by the graph
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The procedure for constructing gauge invariant actions can be extended to compact non-abelian
groups. These theories are at the basis of the “Standard Model” of the fundamental interactions.
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together with similar graphs where the external photon lines are attached to the vertices with
different orderings. In general, loop corrections can be divergent and must be cured by renor-
malization. However, for the photon-photon scattering the calculation of the Feynman graph
depicted above is finite, and there is no need to renormalize it. This fact may be interpreted
as a consequence of gauge invariance.

3 Non-abelian gauge theories and QCD

The construction of gauge invariant actions can be extended to compact non-abelian groups.
For that, we need to review the main properties of Lie groups, leaving appendix A for more
detailed considerations.

3.1 Lie groups

Let us briefly review simple and compact Lie groups, having in mind SU(N) as the main
example,

An element U of a compact, non-abelian Lie group G can be parametrized by coordinates αa
(the parameters) associated with hermitian generators T a. Here is a list of the main definitions
and properties:

(i) U = U(α) = exp(iαaT
a) ∈ G a = 1, .., dim G

(ii) [T a, T b] = ifabcT
c

(iii) tr(T aFT
b
F) =

1

2
δab

(iv) fabc = fabdδ
dc is totally antisymmetric

(v) [[T a, T b], T c] + [[T b, T c], T a] + [[T c, T a], T b] = 0

⇒ fabdf
dc
e + f bcdf

da
e + f cadf

db
e = 0

(iv) (T aAdj)
b
c = −ifabc .

(i) describes the exponential representation of an arbitrary element U of the group G connected
to the identity. We take the defining representation, i.e. the matrix representation that in many
cases is used to define the group, which is given by unitary matrices. The index a takes as many
values as the dimension of the group. Therefore, an element of the group is parameterized by
the “angles” αa.
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(ii) is the Lie algebra satisfied by the hermitian generators T a. The constants fabc are real and
are known as the structure constants. They characterize the group G.
(iii) defines a choice for the normalization of the generators in the fundamental representation
T aF , also called the defining representation. It identifies the so-called “Killing metric”. More
generally, one could have defined the Killing metric γab by tr(T aFT

b
F) = 1

2
γab, and prove that

the Killing metric has to be positive definite for compact Lie groups, such as SU(N). The
normalization chosen above produces the Kronecker delta δab as the Killing metric for the
compact group G.
(iv) makes use of the Killing metric to raise an index in the structure constants. Then, the
symbols fabc are completely antisymmetric: antisymmetry on the indices a and b is obvious
from (ii); antisymmetry on the indices b and c is deduced by multiplying the Lie algebra with
an additional generator, taking the trace, and using (iii) together with the cyclic property of
the trace.
(v) gives the Jacobi identities satisfied by the structure constants.
(vi) defines the adjoint representation. It is proven to be a representation by using the Jacobi
identities. Note that the indices in (T aAdj)

b
c all run from 1 to dim G, i.e. are indices of the

adjoint representation. In the case of SU(N), they run from 1 to N2 − 1.

3.2 Action with rigid SU(N) symmetry

Let us now consider N free Dirac fields with identical masses m, assembled in column and raw
vectors as follows

ψ =




ψ1

ψ2

.

.
ψN



, ψ =

(
ψ1, ψ2, ., ., ψN

)
(21)

so that the scalar product

ψψ = ψ1ψ
1 + ψ2ψ

2 + · · ·+ ψNψ
N (22)

is manifestly SU(N) invariant. The free lagrangian is given by

LDirac = −ψγµ∂µψ −mψψ (23)

and is invariant under the SU(N) symmetry transformations given by

ψ(x) → ψ′(x) = Uψ(x)

ψ(x) → ψ′(x) = ψ(x)U † = ψ(x)U−1 (24)

where U ∈ SU(N), and U † = U−1 since U is unitary. These are global transformations, as
the αa parameters contained in U = U(α) = exp(iαaT a) are constant (indices in αa are raised
and lowered with the Killing metric, that coincides with the identity in our conventions). Note
that all the fermion masses must be identical, otherwise the mass term would break the SU(N)
symmetry.
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3.3 Covariant derivative

It is again convenient to introduce the concept of covariant derivatives to make the SU(N)
symmetry local. By definition, the covariant derivative when applied to tensors produces new
tensors. To start with, we recall that a tensor ψ(x) in the fundamental representation of the
gauge group SU(N), i.e. the representation that sometimes is indicated by its dimension N , is
a field defined by the transformation

ψ(x) → ψ′(x) = U(x)ψ(x) (25)

where U(x) is a N × N matrix of SU(N) for any spacetime point x. More generally, fields
transforming in any given representation R(U(x)) of the original matrices U(x) are said to be
tensors in the representation R. For example, the field ψ(x) is a tensor in the anti-fundamental
representation, usually indicated by N , and its transformation rule can be written as follows

ψ(x) → ψ′(x) = ψ(x)U−1(x) . (26)

Evidently, the term ψ(x)ψ(x) is a scalar under the gauge transformation.
The covariant derivative acting on tensors produces new tensors. It is defined by

Dµ = ∂µ +Wµ(x) (27)

where Wµ(x) is a matrix-valued gauge field, also known as the connection (geometrically, it
defines a parallel transport in a certain space, known as fiber bundle). When applied to the
tensor ψ(x), the term with the gauge field Wµ mixes the N Dirac fermions contained in ψ,
and thus is formed by N × N matrices (a matrix for any value of the index µ). It performs
infinitesimal group transformations and defines a sort of parallel transport. It can be expanded
in terms of the generators as follows

Wµ(x) = −iW a
µ (x)T a . (28)

This relation defines the gauge fields W a
µ (x), and there are N2− 1 of them for the gauge group

SU(N). From the requirement of covariance

ψ(x) → ψ′(x) = U(x)ψ(x)

Dµψ(x) → D′µψ
′(x) = U(x)Dµψ(x) (29)

one obtains the following transformation rule for the gauge potential

Wµ(x) → W ′
µ(x) = U(x)Wµ(x)U−1(x) + U(x)∂µU

−1(x) . (30)

Let us prove this. Requiring that D′µψ
′ = UDµψ, one computes

D′µψ
′ ≡ (∂µ +W ′

µ)ψ′

= UDµψ = U∂µψ + UWµψ = U∂µ(U−1Uψ) + UWµU
−1Uψ

= (U∂µU
−1)ψ′ + ∂µψ

′ + UWµU
−1ψ′

= [∂µ + (UWµU
−1 + U∂µU

−1)]ψ′ (31)

which proves the above transformation rule for Wµ. A comment: as ψ transforms in the
fundamental representation of SU(N), the T a contained in the Wµ of eqs. (28) and (31) are

7



the generators in the fundamental representation. In general, one must consider the generators
in the representation of the tensors on which the covariant derivative acts upon.

Covariant derivatives do not commute. This fact allows us to define the “curvature” tensor
(or “field strength”) the following way

[Dµ, Dν ]ψ = Fµνψ (32)

so that
Fµν = ∂µWν − ∂νWµ + [Wµ,Wν ] . (33)

It is immediate to check that the field strength transform covariantly as

Fµν → F ′µν = UFµνU
−1 (34)

which follows from the covariance of (32). This rule corresponds to the adjoint representation.

3.4 Gauge invariant action

It is now simple to construct a gauge invariant lagrangian from (23): it is enough to substitute
derivatives with gauge covariant derivatives (this is also called “minimal coupling”). One finds

L1 = −ψ(γµDµ +m)ψ (35)

that depends on the new field Wµ contained in the covariant derivative Dµ. Now, one must
introduce dynamics for Wµ as well. Considering the simplest gauge and Lorentz invariant
lagrangian with at most two derivatives one is led to

L2 =
1

2
tr(FµνF

µν) = −1

4
F a
µνF

µνa (36)

where we used the generators in the fundamental representation normalized by trT aT b = 1
2
δab.

We have chosen here a canonical normalization. More generally, one should consider a relative
weight between the different gauge-invariant pieces, so that introducing a coupling constant g
one writes the final lagrangian as

L =
1

2g2
tr(FµνF

µν)− ψ(γµDµ +m)ψ (37)

which is gauge invariant under the following transformation rules

ψ(x) → ψ′(x) = U(x)ψ(x)

ψ(x) → ψ′(x) = ψ(x)U−1(x)

Wµ(x) → W ′
µ(x) = U(x)Wµ(x)U−1(x) + U(x)∂µU

−1(x)

Fµν(x) → F ′µν(x) = U(x)Fµν(x)U−1(x) .

(38)

Let us report the infinitesimal transformations as well. Defining the matrix α ≡ −iαaT a
with Lie parameters αa � 1, one describes infinitesimal transformation in the form

U = eiαaTa

= e−α = 1− α +O(α2) (39)
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so that for infinitesimal variations of fields (δψ(x) ≡ ψ′(x)− ψ(x))

δψ = −αψ
δψ = ψα

δWµ = ∂µα + [Wµ, α] = Dµα

δFµν = [Fµν , α]

(40)

where in the last-but-one line we recognize the covariant derivative acting on the adjoint rep-
resentation. The infinitesimal form of the gauge transformations is needed when studying the
gauge-fixing procedure required to quantize the theory.

Now, let us rewrite the lagrangian by considering a field redefinition defined by the shift
Wµ → gWµ. It is used to get a canonical normalization for the gauge field, which amounts
to pushing the coupling constant in front of the interaction vertices. The shift induces a
redefinition of the field strength Fµν → gFµν , with the new field strength given by

Fµν = ∂µWν − ∂νWµ + g [Wµ,Wν ] . (41)

In components,
Wµ(x) = −iW a

µ (x)T a

Fµν(x) = −iF a
µν(x)T a

(42)

and
F a
µν = ∂µW

a
ν − ∂νW a

µ + gfabcW b
µW

c
ν (43)

and the lagrangian takes the more explicit form

L = −1

4
F a
µνF

µνa − ψ[γµ(∂µ − igW a
µT

a) +m]ψ . (44)

The coupling constant now appears in front of the interaction vertices. The infinitesimal gauge
transformations, after redefining the parameters αa → gαa, read

δψ(x) = igαa(x)T aψ(x)

δW a
µ (x) = ∂µα

a(x) + gfabcW b
µ(x)αc(x) = Dµα

a(x) .
(45)

The first term in the action (44) describes the free propagation of the fields W a
µ (the non-

abelian spin 1 particles) along with cubic and quartic self-interactions with coupling constant g
and g2, respectively. A positive non-definite Killing metric would result in a term with kinetic
energy that is not positive-definite, and this would not be acceptable: it is necessary to consider
only compact groups to satisfy this request. The second term describes the free propagation
of the ψ fields (spin 1/2 particles with non-abelian charges, i.e. “color” charges) together with
an interaction with the gauge field W a

µ and a strength measured by the coupling constant
g. It can be treated perturbatively if g is small enough. The “non-abelian” or “color” charge
corresponds to the representation of the gauge group chosen for the fields ψ (in our case we have
taken the fundamental representation, but any other representation could have been chosen as
well). Thus, we have seen how the principle of gauge invariance has allowed us to derive all the
interaction vertices between fields of spin 1/2 and 1 in terms of the single coupling constant g.

9



It is useful to analyze in more detail the structure of the infinitesimal transformation laws
that we have been deriving. Introducing indices, the infinitesimal transformation of the fermion
field ψ(x) in (40) may be written as

δψi(x) = igαa(x)(T aF )ijψ
j(x) (46)

with i, j = 1, ..., N , and where by (T aF )ij we now indicate the generators in the fundamental
representation (N×N matrices, one for each value of the index a). Similarly, the transformation
rules for the Dirac conjugate field (morally, the complex conjugate field) can be written as

δψi(x) = −igαa(x)(T a∗F )i
jψj(x) = igαa(x)(T a

F
)i
jψj(x) (47)

where1 T a
F

= −T a∗F are the generators in the complex conjugate of the fundamental represen-
tation T aF . Continuing along this line, we verify that the field F a

µν transforms in the adjoint
representation

δF a
µν = gfabcF b

µνα
c = igαc(T cAdj)

abF b
µν (48)

as the generators in the adjoint representation are given by

(T cAdj)
ab = −ifabc . (49)

Let us also verify explicitly that the transformation law of W a
µ can be expressed in terms of the

covariant derivative acting on a tensor in the adjoint representation

δW a
µ = ∂µα

a + gfabcW b
µα

c = ∂µα
a − igW b

µ(T bAdj)
acαc = Dµα

a . (50)

Note also that the non-derivative part of this transformation can be written equivalently as

δW a
µ = igαc(T cAdj)

abW b
µ + · · · (51)

which highlights the tensorial character of this part of the transformation, matching (48).
Finally, let us recall that the Jacobi identities for arbitrary operators, once applied to the

covariant derivative Dµ = ∂µ +Wµ,

[Dµ, [Dν , Dλ]] + [Dν , [Dλ, Dµ]] + [Dλ, [Dµ, Dν ]] = 0 , (52)

give rise to the so-called Bianchi identities for the field strength Fµν

DµFνλ +DνFλµ +DλFµν = 0 , (53)

where the covariant derivative in the adjoint representation can be written as

DµFνλ = ∂µFνλ + [Wµ, Fνλ] . (54)

1Given the matrices in the fundamental representation U = eiα
aTa

F , the complex conjugate matrices also
furnish a representation U∗ = e−iα

aTa∗
F = eiα

a(−Ta∗
F ) = eiα

aTa
F , with generators T a

F
= −T a∗F .

10



3.5 The action of quantum chromodynamics (QCD)

The action of quantum chromodynamics is based on the group SU(3). In addition to the gluons
(the eight spin 1 particles associated with the gauge field W a

µ , which has an index in the adjoint
representation, and thus belongs to the 8 of SU(3)), the lagrangian contains six fermion fields
ψf corresponding to the six known flavors of quarks, f = (u, d, c, s, t, b), namely up, down,
charm, strange, top, bottom. Each quark flavor is degenerate, as it transforms in the 3 of the
SU(3) gauge group: the quark is said to be colored (with color red, green and blue, in the
usual convention). The absence of color indicates a scalar, like the lagrangian (it corresponds
to the 1 of SU(3)). Of course, the corresponding antiparticles, the antiquarks (ū, d̄, c̄, s̄, t̄, b̄),
transform in the conjugate representation, the 3̄ of SU(3), which is the representation of ψf ,
the Dirac conjugate of ψf .

The eight infinitesimal generators of SU(3) in the fundamental representation are given by
the Gell-Mann matrices λa, which generalize the Pauli matrices σi of SU(2) to SU(3),

T a =
λa

2
a = 1, . . . , 8 (55)

where

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0




λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 −i
0 0 0
i 0 0




λ6 =




0 0 0
0 0 1
0 1 0


 , λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 . (56)

These matrices are normalized according the convention tr(T aT b) = 1
2
δab.

An arbitrary element of the SU(3) group in the fundamental representation is therefore
described by 3 × 3 matrices of the form U = exp(iαa

λa

2
). By calculating the Lie algebra one

finds the explicit values of the structure constants of the SU(3) group. We refrain to report
them here. The QCD lagrangian is therefore

LQCD = −1

4
F a
µνF

µνa −
6∑

f=1

ψf

(
γµDµ +mf

)
ψf

= −1

4
F a
µνF

µνa −
6∑

f=1

ψf

(
γµ∂µ +mf

)
ψf + i

g
S

2
W a
µ

6∑

f=1

ψfγ
µλaψf (57)

=

where

�1 =

0
@

0 1 0
1 0 0
0 0 0

1
A , �2 =

0
@

0 �i 0
i 0 0
0 0 0

1
A , �3 =

0
@

1 0 0
0 �1 0
0 0 0

1
A

�4 =

0
@

0 0 1
0 0 0
1 0 0

1
A , �5 =

0
@

0 �i
0 0 0
i 0 0

1
A

�6 =

0
@

0 0 0
0 0 1
0 1 0

1
A , �7 =

0
@

0 0 0
0 0 �i
0 i 0

1
A , �8 =

1p
3

0
@

1 0 0
0 1 0
0 0 �2

1
A . (45)

These matrices are normalized according the convention

tr(T aT b) =
1

2
�ab . (46)

An arbitrary element of the SU(3) group in the fundamental representation is therefore
described by 3 ⇥ 3 matrices of the form U = exp(�i↵a �a

2
). By calculating the Lie algebra one

can find the explicit values of the structure constants that identify the SU(3) group. The QCD
lagrangian is therefore

LQCD = �1

4
F a

µ⌫F
µ⌫a �

6X

f=1

 f

⇣
�µDµ + mf

⌘
 f

= �1

4
F a

µ⌫F
µ⌫a �

6X

f=1

 f

⇣
�µ@µ + mf

⌘
 f + i

g
S

2
W a

µ

6X

f=1

 f�
µ�a f (47)

=
g

+
g

g

g

g
S +

g

g

g

g

g2
S

+
q

+
q

q

g

g
S

where the coupling constant is denoted by g
S
, and the index f 2 (1, 2, · · · , 6) = (u, d, c, s, t, b)

indicates the flavor of the quark. Di↵erent flavors of quarks have di↵erent masses mf .
The QCD lagrangian also possesses various rigid symmetries in addition to those already

mentioned. A rigid symmetry always present is the U(1) symmetry which rotates all fields of
the quarks by the same phase: the associated conserved charge is the baryon number. It is a
symmetry that is also preserved by the other fundamental interactions.

There are also other U(1) symmetries which rotate the various fermionic fields separately.
They give rise to the conservation laws of the respective fermion numbers (e.g. strangeness S,
charm C, etc ..). These flavor symmetries are exact only for QCD (and QED), but the weak
force violates them. In total there are six U(1) conserved charges, one for each quark flavor,
and the baryon number is a particular linear combination of these six independent charges.

There are also other approximate symmetries of the QCD lagrangian. In the limit in which
some of the quark masses are taken to be identical, there is a rigid additional non-abelian
symmetry. For example, assuming identical the masses for the up and down quarks, mu = md,
one can rotate the fields  u and  d with each other with an SU(2) matrix. This rigid SU(2)
symmetry corresponds to the strong isospin, used to group hadrons into families (states of

9

where the coupling constant is denoted by g
S
, and the index f ∈ (1, 2, · · · , 6) = (u, d, c, s, t, b)

indicates the flavor of the quark. Different flavors of quarks have different masses mf . Note
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that to obtain the propagator of the gauge field from the first term, as indicated in the figure,
one must implement a gauge-fixing procedure.

The QCD lagrangian possesses additional rigid symmetries. A well-known rigid symmetry
is the U(1) symmetry which rotates all fields of the quarks by the same phase: the associated
conserved charge is the baryon number. It is a symmetry that is also preserved by the other
fundamental interactions.

Other U(1) symmetries rotate the various fermionic fields separately. They give rise to
conservation laws of the respective fermion numbers (e.g. strangeness S, charm C, etc ..).
These flavor symmetries are exact only for QCD (and QED), but the weak force violates them.
In total, there are six U(1) independent conserved charges, one for each quark flavor, and the
baryon number B is a particular linear combination of these six independent charges. Also, the
electric charge Q is a linear combination of them, which is gauged to obtain the electromagnetic
couplings.

A summary of these U(1) symmetries is given in the following table, which reports the
various U(1) charges with a standard normalization:

Quarks U D C S T B B Q

u 1 0 0 0 0 0 1
3

2
3

d 0 −1 0 0 0 0 1
3
−1

3

c 0 0 1 0 0 0 1
3

2
3

s 0 0 0 −1 0 0 1
3
−1

3

t 0 0 0 0 1 0 1
3

2
3

b 0 0 0 0 0 −1 1
3
−1

3

note that we have indicated the baryon number by B, and the bottom (or beauty) quantum
number by B. Just to be clear, for each symmetry, each quark flavor transforms with the charge
indicated in the table, for example for the electric charge Q we have

ψf → ψ′f = eiαQfψf . (58)

By looking at the table, one recognizes the following relations

B =
1

3
(U + C + T )− 1

3
(D + S + B)

Q =
2

3
(U + C + T ) +

1

3
(D + S + B) .

(59)

There are also approximate symmetries of the QCD lagrangian. In the limit in which some
of the quark masses are taken to be identical, there is a rigid additional non-abelian symmetry.
For example, assuming identical masses for the up and down quarks, mu = md, one can rotate
the fields ψu and ψd with each other with a SU(2) matrix to redefine what is meant by “up”
and what by “down”


 ψu

ψd


 →


 ψ′u

ψ′d


 = U


 ψu

ψd


 U ∈ SU(2) . (60)
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This rigid SU(2) symmetry corresponds to the strong isospin ~I, used to group hadrons into
families (from phenomenology we know that states of quarks are bound by the strong force
and show the phenomenon of color confinement: bound states of quarks are color singlets and
correspond to the mesons and baryons). Examples of these families are: (i) the isospin doublet
of the nucleons (proton and nucleon) composed of three confined up and down quarks; (ii) the
triplet of π mesons, the pions π± and π0, composed of a quark and an antiquark of the up and
down types.

Considering identical the masses for the quarks up, down, and strange, mu = md = ms, one
finds an even larger symmetry group, the SU(3) flavor group, that mixes the three flavors up,
down and strange:




ψu

ψd

ψs


 →




ψ′u

ψ′d

ψ′s


 = U




ψu

ψd

ψs


 U ∈ SU(3) . (61)

This SU(3) flavor group is the one that is used in the static quark model (the “eightfold way”
of Gell-Mann) to take care of the similarities observed between the various hadrons. It should
not be confused with the color group, also an SU(3) group. As already said, color is expected
to confine inside the hadrons and leaves only composite colorless states. Examples of multiplets
of hadronic particles described by the SU(3) flavor group are:
the meson octet (π±, π0, K±, K0, K̄0, η),
the baryon octet (p, n,Σ±,Σ0,Ξ±,Λ),
the baryon decuplet (∆−,∆0,∆+,∆++,Σ∗±,Σ∗0,Ξ∗±,Ω−).
The existence of these families is compatible with group theory: the 8 and the 10 are represen-
tations of SU(3). Let us consider the mesons in more detail. They consist of a quark-antiquark
pair (qq̄). The quarks q transform in the 3 of SU(3), with 3 ∼ (u, d, s), while antiquarks q̄
transforms in the 3̄ of SU(3), with 3̄ ∼ (ū, d̄, s̄). From this, it follows that possible bound
states (qq̄) must transform in the

3⊗ 3̄ = 1⊕ 8

and therefore both singlet and octets could in principle exist for the mesons.
Baryons are bound states of three quarks (qqq), and since SU(3) group theory tells us that

3⊗ 3⊗ 3 = (6⊕ 3̄)⊗ 3 = 10⊕ 8⊕ 8⊕ 1

we understand that octets and decuplets are allowed possibilities for multiplets of baryons.
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A Notes on group theory

A.1 Lie groups and algebras

Given a simple and compact Lie group G, we indicate its elements using the exponential
parametrization U(α) = exp(iαaT

a), where T a are the infinitesimal hermitian generators that
satisfy the Lie algebra

[T a, T b] = ifabcT
c . (62)

In general, considering an irreducible representation R of G, we get an irreducible representation
of its Lie algebra with traceless hermitian matrices T aR

[T aR , T
b
R ] = ifabcT

c
R . (63)

The matrices T aR act on a vector space of dimensions D(R), and thus are D(R)×D(R) matrices.
D(R) is called the dimension of the representation. We will mostly consider SU(N), whose
most used representations are:
• the fundamental (or defining) representation N , with D(N) = N
• its complex conjugate representation N̄ , with D(N̄) = N
• the adjoint representation Adj, with D(Adj) = N2 − 1.

Given a representation R with generators T aR , the generators of its complex conjugate rep-
resentation R̄ are given by

T aR̄ = −(T aR )∗ (64)

as seen from taking the complex conjugate of the original representation

(exp(iαaT
a
R ))∗ = exp(−iαa(T aR )∗) ≡ exp(iαaT

a
R̄ ) . (65)

The generators are normalized so that in the fundamental representation one has

tr(T aT b) =
1

2
δab (66)

which normalizes the so-called Killing metric γab = 2 tr(T aT b) to γab = δab. This matrix is used
to define scalar products and to raise/lower the indices that label the generators. In particular,
it is used to define the structure constants with all upper indices

fabc = fabdδ
dc (67)

(more generally fabc = fabdγ
dc). This is proven to be totally antisymmetric. The antisymmetry

of fabc is obvious on the first two indices, as seen from the definition of the Lie algebra. Then
using (62) and (66) one can compute

tr([T a, T b]T c) = ifabd tr(T dT c) =
i

2
fabc = tr(T aT bT c)− tr(T bT aT c)

= tr(T cT aT b)− tr(T aT cT b) = −tr([T a, T c]T b) = − i
2
facb

(68)

so that fabc = −facb, which implies complete antisymmetry. In the above manipulations, we
have used the cyclic property of the trace.

The structure constants can be used to define the adjoint representation ‘Adj’ by

(T aAdj)
b
c = −ifabc (69)
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since the relation
[T aAdj , T

b
Adj ] = ifabcT

c
Adj (70)

reduces to the Jacobi identity and is thus satisfied.
One defines the index T (R) of a representation R by

tr(T aR T
b
R ) = T (R) δab . (71)

with the index of the fundamental representation N normalized by (66) to T (N) = 1
2
.

Casimir operators are operators built from the generators which commute with all the
generators of the group. In particular, the quadratic Casimir operator that is constructed
using the Killing metric

C2 = T aT bγab = T aT a (72)

is such an operator. The proof is simple

[C2, T
b] = [T aT a, T b] = T a[T a, T b] + [T a, T b]T a = T aifabcT c + ifabcT cT a

= ifabc(T aT c + T cT a) = 0 (73)

that follows since the structure constants are completely antisymmetric2. Since C2 commutes
with all the generators, it must be proportional to the identity in any given irreducible repre-
sentation. This defines the number C(R), the quadratic Casimir in the irrep R, by

T aR T
a
R = C(R) 1 . (74)

Setting a = b in (71) and summing (i.e. taking the scalar product with the Killing metric) gives
the relation

T (R)D(Adj) = C(R)D(R) . (75)

For the simplest representations one finds

D(N) = D(N̄) = N T (N) = T (N̄) =
1

2
C(N) = C(N̄) =

N2 − 1

2N
(76)

D(Adj) = N2 − 1 T (Adj) = N C(Adj) = N . (77)

Finally, it is useful to recall the concept of invariant tensors. They are defined to be tensors
that remain invariant after group transformations. For example, denoting by ψi the vectors
transforming in the defining representation of SU(N), so that the upper index i is transformed
by the defining matrices U i

j of SU(N), then the Kronecker symbol δij is an invariant tensor

δij → δ′ij = U i
k(U

−1,T )j
lδkl = U i

k(U
∗)j

lδkl = U i
k(U

∗)j
k = δij . (78)

It tells that in combining the representation N with N̄ there appears a scalar

N ⊗ N̄ = 1⊗+ · · · (79)

i.e. one can form the scalar ψiχi out of ψi and χi. Similarly, the completely antisymmetric
tensor with N upper indices, εi1i2...iN , normalized to one, ε12...N = 1, is an invariant tensor

ε′i1i2...iN = εi1i2...iN (80)

2We have used that [AB,C] = A[B,C] + [A,C]B for arbitrary operators.
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known also as the Levi-Civita symbol. Indeed, one computes

εi1i2...iN → ε′i1i2...iN = U i1
j1U

i2
j2 ...U

iN
jN ε

j1j2...jN = (detU)εi1i2...iN (81)

but detU = 1 for SU(N), and the invariant property follows. Same thing for εi1i2...iN .
Other invariant tensors are the generators in any given representation R, which we may

write as (T aR )αβ, where the upper index α belongs to (the vectors of) the representation R and
the lower index β to the conjugate representation R̄ (see note3) This statement follows from
the Lie algebra (63) by recognizing that the structure constants fabc give rise to the generators
in the adjoint representation, that transforms the index a in (T aR )αβ. This also means that

R⊗ R̄⊗ Adj = 1⊕ · · · . (82)

Moreover, since the adjoint is a real representation (the fabc are real numbers and thus the
group elements eiαaTa

Adj are real) one may understand that

Adj⊗ Adj = 1⊕ · · · (83)

that matches with the fact that the Killing metric δab is an invariant tensor that can be used
to construct scalar products (more generally the tensor δαβ for the arbitrary representations R
and R̄ is an invariant tensor). Then (82) and (83) imply

R⊗ R̄ = Adj⊕ · · · (84)

which is interpreted by saying that (T aR )αβ are Clebsch-Gordan coefficients: they combine the
tensors in the representation R with those in the representation R̄ to produce a tensor trans-
forming in the adjoint. Said differently, Clebsch-Gordan coefficients are invariant tensors.

Finally, let us define another invariant tensor, the dabc tensor, together with the anomaly
coefficients A(R) by

A(R)dabc =
1

2
tr
(
T aR {T bR , T cR}

)
(85)

where the overall normalization may be fixed by setting A = 1 for the fundamental repre-
sentation. It is totally symmetric and appears in the study of chiral anomalies. The only
simple groups that have a non-vanishing dabc tensor, and therefore a cubic Casimir operator
C3 ∼ dabcT aT bT c, are SU(N) for N ≥ 3 and SO(6).

A.2 Cartan-Weyl basis

It is often useful to rewrite the generators of a Lie algebra in the Cartan-Weyl basis. This is
defined by first finding the maximal number of generators (or independent linear combination
of generators) Hi that commute between themselves

[Hi, Hj] = 0 . (86)

This maximal number is called the rank of the group. They are taken to be hermitian, and they
define the Cartan subalgebra of the Lie algebra. Since they commute, they can be diagonalized

3One may recall that given a representation R, one finds that R−1,T , R∗ and R−1,† are also representations.
These four representations acts on vectors vα, vα, v

α̇, vα̇ belonging to the appropriate vector space. For unitary
representations vα̇ ∼ vα and vα̇ ∼ vα.
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simultaneously in any given representation, and the eigenvalues are called the weights. This
definition generalizes the angular momentum generator J3 of SU(2), which is a group of rank 1.
J3 is the generator that is usually diagonalized in quantum mechanics4. The particular weights
of the adjoint representation are called roots.

The remaining generators are combined in complex combinations so that they correspond
to the roots αi

[Hi, Eα] = αiEα (87)

which can be interpreted by saying that αi are eigenvalues and Eα are eigenvectors (the root α
is a vector with components αi). The generators Eα cannot be hermitian, but rather one has
that E†α = E−α, so that if α is a root then also −α is a root. They generalize the J± angular
momentum operators of SU(2). Finally, one has the remaining structure constants that appear
in calculating

[Eα, Eβ] . (88)

The Jacobi identity can be used to study them, and in particular one finds that

[Eα, E−α] = αiHi . (89)

which also generalizes the SU(2) case.
This basis (and a related one called the Chevalley basis) is very useful in deriving general

properties of Lie algebras, in a close analogy with the theory of angular momentum in quantum
mechanics. In particular, it is useful to prove the complete classification of simple Lie algebras,
due to Killing and Cartan. This classification is often encoded by the Dynkin diagrams of fig.
1. The algebras depicted there correspond to the following compact groups: An = SU(n + 1),
Bn = SO(2n + 1), Cn = Sp(2n), and Dn = SO(2n), where n is the rank. The remaining
algebras G2, F4, E6, E7, E8 correspond to the so-called exceptional groups.

Figure 1: Dynkin diagrams

4Recall the SU(2) algebra: [J3, J±] = ±J± and [J+, J−] = 2J3.
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