
16.10.2020

Additional notes on group theory
(Lecture notes - a.a. 2020/21)

Fiorenzo Bastianelli

1 Lie groups and algebras

Given a simple and compact Lie group G, we indicate its elements using the exponential
parametrization U(α) = exp(iαaT

a), where T a are the infinitesimal hermitian generators that
satisfy the Lie algebra

[T a, T b] = ifabcT
c . (1)

In general, considering an irreducible representations R of G, we get an irreducible representa-
tions of its Lie algebra with traceless hermitian matrices T aR

[T aR , T
b
R ] = ifabcT

c
R . (2)

The matrices T aR act on a vector space of dimensions D(R), and thus are D(R)×D(R) matrices.
D(R) is called the dimension of the representation. We will mostly consider SU(N), whose
most used representations are:
• the fundamental (or defining) representation N , with D(N) = N
• its complex conjugate representation N̄ , with D(N̄) = N
• the adjoint representation Adj, with D(Adj) = N2 − 1.

Given a representation R with generators T aR , the generators of its complex conjugate rep-
resentation R̄ are given by

T aR̄ = −(T aR )∗ (3)

as seen from taking the complex conjugate of the original representation

(exp(iαaT
a
R ))∗ = exp(−iαa(T aR )∗) ≡ exp(iαaT

a
R̄ ) . (4)

The generators are normalized so that in the fundamental representation one has

tr(T aT b) =
1

2
δab (5)

which normalizes the so-called Killing metric γab = 2 tr(T aT b) to γab = δab. This matrix is used
to define scalar products and to raise/lower the indices that label the generators. In particular,
it is used to define the structure constants with all upper indices

fabc = fabdδ
dc (6)

(more generally fabc = fabdγ
dc). This is proven to be totally antisymmetric. The antisymmetry

of fabc is obvious on the first two indices, as seen from the definition of the Lie algebra. Then
using (1) and (5) one can compute

tr([T a, T b]T c) = ifabd tr(T dT c) =
i

2
fabc = tr(T aT bT c)− tr(T bT aT c)

= tr(T cT aT b)− tr(T aT cT b) = −tr([T a, T c]T b) = − i
2
facb

(7)
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so that fabc = −facb, which implies complete antisymmetry. In the above manipulations we
have used the cyclic property of the trace.

The structure constants can be used to define the adjoint representation ‘Adj’ by

(T aAdj)
b
c = −ifabc (8)

since the relation
[T aAdj , T

b
Adj ] = ifabcT

c
Adj (9)

reduces to the Jacobi identity and is thus satisfied.
One defines the index T (R) of a representation R by

tr(T aR T
b
R ) = T (R) δab . (10)

with the index of the fundamental representation N normalized by (5) to T (N) = 1
2
.

Casimir operators are operators built from the generators which commute with all the
generators of the group. In particular, the quadratic Casimir operator constructed using the
Killing metric

C2 = T aT bγab = T aT a (11)

is such an operator. The proof is simple

[C2, T
b] = [T aT a, T b] = T a[T a, T b] + [T a, T b]T a = T aifabcT c + ifabcT cT a

= ifabc(T aT c + T cT a) = 0 (12)

that follows since the structure constants are completely antisymmetric1. Since C2 commutes
with all the generators, it must be proportional to the identity in any given irreducible repre-
sentation. This defines the number C(R), the quadratic Casimir in the irrep R, by

T aR T
a
R = C(R) 1 . (13)

Setting a = b in (10) and summing (i.e. taking the scalar product with the Killing metric) gives
the relation

T (R)D(Adj) = C(R)D(R) . (14)

For the simplest representation one finds

D(N) = D(N̄) = N T (N) = T (N̄) =
1

2
C(N) = C(N̄) =

N2 − 1

2N
(15)

D(Adj) = N2 − 1 T (Adj) = N C(Adj) = N . (16)

Finally, it is useful to recall the concept of invariant tensors. They are defined to be tensors
that remain invariant after group transformations. For example, denoting by ψi the vectors
transforming in the defining representation of SU(N), so that the upper index i is transformed
by the defining matrices U i

j of SU(N), then the Kronecker symbol δij is an invariant tensor

δij → δ′ij = U i
k(U

−1,T )j
lδkl = U i

k(U
∗)j

lδkl = U i
k(U

∗)j
k = δij . (17)

It tells that in combining the representation N with N̄ there appears a scalar

N ⊗ N̄ = 1⊗+ · · · (18)

1 We have used that [AB,C] = A[B,C] + [A,C]B for arbitrary operators.
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i.e. one can form the scalar ψiχi out of ψi and χi. Similarly, the completely antisymmetric
tensor with N upper indices, εi1i2...iN , normalized to one, ε12...N = 1, is an invariant tensor

ε′i1i2...iN = εi1i2...iN (19)

known also as the Levi-Civita symbol. Indeed, one computes

εi1i2...iN → ε′i1i2...iN = U i1
j1U

i2
j2 ...U

iN
jN ε

j1j2...jN = (detU)εi1i2...iN (20)

but detU = 1 for SU(N), and the invariant property follows. Same thing for εi1i2...iN .
Other invariant tensors are the generators in any given representation R, which we may

write as (T aR )αβ, where the upper index α belongs to (the vectors of) the representation R and
the lower index β to the conjugate representation R̄ (see note2) This statement follows from
the Lie algebra (2) by recognizing that the structure constants fabc give rise to the generators
in the adjoint representation, that transforms the index a in (T aR )αβ. This also means that

R⊗ R̄⊗ Adj = 1⊕ · · · . (21)

Moreover, since the adjoint is a real representation (the fabc are real numbers and thus the
group elements eiαaTa

Adj are real) one may understand that

Adj⊗ Adj = 1⊕ · · · (22)

that matches with the fact that the Killing metric δab is an invariant tensor that can be used
to construct scalar products (more generally the tensor δαβ for the arbitrary representations R
and R̄ is an invariant tensor). Then (21) and (22) imply

R⊗ R̄ = Adj⊕ · · · (23)

which is interpreted by saying that (T aR )αβ are Clebsch-Gordan coefficients: they combine the
tensors in the representation R with those in the representation R̄ to produce a tensor trans-
forming in the adjoint. Said differently, Clebsch-Gordan coefficients are invariant tensors.

Finally, let us define another invariant tensor, the dabc tensor, together with the anomaly
coefficients A(R) by

A(R)dabc =
1

2
tr
(
T aR {T bR , T cR}

)
(24)

where the overall normalization may be fixed by setting A = 1 for the fundamental repre-
sentation. It is totally symmetric and appears in the study of chiral anomalies. The only
simple groups that have a non-vanishing dabc tensor, and therefore a cubic Casimir operator
C3 ∼ dabcT aT bT c, are SU(N) for N ≥ 3 and SO(6).

1.1 Cartan-Weyl basis

It is often useful to rewrite the generators of a Lie algebra in the Cartan-Weyl basis. This is
defined by first finding the maximal number of generators (or independent linear combination
of generators) Hi that commute between themselves

[Hi, Hj] = 0 . (25)

2One may recall that given a representation R, one finds that R−1,T , R∗ and R−1,† are also representations.
These four representations acts on vectors vα, vα, v

α̇, vα̇ belonging to the appropriate vector space. For unitary
representations vα̇ ∼ vα and vα̇ ∼ vα.
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This maximal number is called the rank of the group. They are taken to be hermitian, and they
define the Cartan subalgebra of the Lie algebra. Since they commute, they can be diagonalized
simultaneously in any given representation, and the eigenvalues are called the weights. This
definition generalizes the angular momentum generator J3 of SU(2), which is a group of rank 1.
J3 is the generator that is usually diagonalized in quantum mechanics3. The particular weights
of the adjoint representation are called roots.

The remaining generators are combined in complex combinations so that they correspond
to the roots αi

[Hi, Eα] = αiEα (26)

which can be interpreted by saying that αi are eigenvalues and Eα are eigenvectors (the root α
is a vector with components αi). The generators Eα cannot be hermitian, but rather one has
that E†α = E−α, so that if α is a root then also −α is a root. They generalize the J± angular
momentum operators of SU(2). Finally, one has the remaining structure constants that appear
in calculating

[Eα, Eβ] . (27)

The Jacobi identity can be used to study them, and in particular one finds that

[Eα, E−α] = αiHi . (28)

which also generalizes the SU(2) case.
This basis (and a related one called the Chevalley basis) are very useful in deriving general

properties of the Lie algebras, in a close analogy with the theory of angular momentum in
quantum mechanics. In particular, it is useful to prove the complete classification of simple
Lie algebras, due to Killing and Cartan. This classification is often portrayed with the Dynkin
diagrams of fig. 1. The algebras depicted there correspond to the following compact groups:
An = SU(n+ 1), Bn = SO(2n+ 1), Cn = Sp(2n), and Dn = SO(2n), where n is the rank. The
remaining algebras correspond to the so-called exceptional groups G2, F4, E6, E7, E8.

3Recall the SU(2) algebra: [J3, J±] = ±J± and [J+, J−] = 2J3.
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Figure 1: Dynkin diagrams
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