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Quantization of gauge theories
(Lecture notes - A.A. 2024/25)

Fiorenzo Bastianelli

1 Faddeev-Popov

The quantization of gauge theories requires special considerations for constructing a well-defined
QFT and its perturbative expansion. The problem is clear in the path integral approach, where
a naive path integral quantization gives a diverging result. Let us consider the case of the abelian
U(1) theory (free electromagnetism)

S[A] =

∫
d4x

(
−1

4
FµνF

µν

)
Z =

∫
DAeiS[A] ∼ ∞

(1)

where Fµν = ∂µAν − ∂νAµ. Here the path integral diverges because one is summing over an
infinite number of gauge equivalent configurations

Aµ(x) → Agµ(x) = Aµ(x) + ig(x)∂µg
−1(x) , g(x) = eiα(x) ∈ U(1) (2)

which have the same value of the action, S[Ag] = S[A]. The field space decomposes into
inequivalent gauge orbits, as in figure 1.

Figure 1: Gauge orbits

One would like to define the path integral in such a way of getting a finite and gauge
invariant result

Z =

∫
DA

Vol(Gauge)
eiS[A] ∼ finite (3)

where ‘Vol(Gauge)’ formally indicates the infinite volume of the gauge group. This definition
can be implemented concretely using a gauge fixing function à la Faddeev-Popov, where un-
physical ghost fields are introduced to exponentiate a measure factor. Ideally, the gauge fixing
function should pick just one representative from each gauge orbits, as sketched in figure 2.
This situation corresponds to the choices of the so called “unitary gauges”. However, very often
it is enough to reduce substantially the number of representative for each gauge orbits, which
happens in the choices of covariant gauges.
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Figure 2: Gauge fixing by the condition f(A) = 0

As we shall see, the gauge-fixed action thus obtained using covariant gauges exhibits a global
symmetry, called BRST symmetry, which is a remnant of the original gauge symmetry and
which is instrumental in proving many properties of the quantum gauge theories. In particular,
it can be used to prove the independence of physical quantities from the gauge-fixing function.
It also forms the basis of the BRST lagrangian quantization method, which generalizes the
Faddeev-Popov method to more general cases. An even more powerful method uses additional
fields (the so-called antifields) and is known as the Batalin-Vilkovisky method.

Let us start describing the Faddeev-Popov method in the case of the free abelian gauge
theory. The trick it to use a gauge-fixing condition, as depicted in figure 2, and insert the
identity (written in a suitable way) in the path integral so to extract the volume of the gauge
group. Consider the identity written as

1 =

∫
dfδ(f) =

∫
dy
∂f(y)

∂y
δ(f(y)) (4)

which generalizes to n-dimensions where f becomes a vector with n components

1 =

∫
dnf δ(n)(f) =

∫
dny det

(
∂f i(y)

∂yj

)
δ(n)(f(y)) . (5)

We formally generalize this further to functional integrals

1 =

∫
Dg δ

(
f(Ag(x))

)
Det

(
δf(Ag(x))

δg(y)

)
(6)

where Dg is a suitable gauge invariant measure that also produces the volume of the gauge
group,

∫
Dg = Vol(Gauge). ‘Det’ indicates a functional determinant. The delta function

(actually, a “delta functional”) δ(f(x)) means that the whole function f(x) is set to vanish.
Then let us compute in a formal way the path integral in (3) inserting the identity in (6)

Z =

∫
DA

Vol(Gauge)
eiS[A]

=

∫
DA

Vol(Gauge)

∫
Dg δ

(
f(Ag(x))

)
Det

(
δf(Ag(x))

δg(y)

)
eiS[A]

=

∫
DAgDg

Vol(Gauge)
δ
(
f(Ag(x))

)
Det

(
δf(Ag(x))

δg(y)

)
eiS[Ag ]

=

∫
Dg

Vol(Gauge)

∫
DAδ

(
f(A(x))

)
Det

(
δf(Ag(x))

δg(y)

) ∣∣∣∣∣
g=1

eiS[A]

=

∫
DAδ

(
f(A(x))

)
Det

(
δf(Ag(x))

δg(y)

) ∣∣∣∣∣
g=1

eiS[A]

(7)
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which is the gauge-fixed path integral we were looking for. In these manipulations we have first
inserted the identity (6), and then used the fact the action and measure are both gauge invariant,
namely S[Ag] = S[A] and DAg = DA. This is certainly true for the classical action, but it
is an assumption for the measure (more concretely it is related to the regularization methods
used to make sense of the diverging Feynman diagrams of the perturbative expansion1). Then,
we have changed variables from Ag to A, so that nothing depends on g(x) anymore, and the
integration on Dg can be factorized out to cancel the infinite gauge volume Vol(Gauge).

The final formula is correct but can be written in more a useful form by:
(i) introducing ghosts, i.e. anticommuting fields c(x) and c̄(x) to exponentiate the determinant,
known as the Faddeev-Popov determinant,
(ii) modifying the gauge-fixing function to get rid of the delta functional from the path integral:
instead of setting f(A(x)) = 0, one may equivalently set it to f(A(x)) = h(x), where h(x) is an
arbitrary function, and then functionally average over the functions h(x) with gaussian weight

e−
i
2ξ

∫
h2 . The rationale behind this procedure is that different gauge-fixing functions must give

the same gauge invariant result. In particular, nothing physical should depend on the value of
the parameter ξ.

Thus one finds

Z =

∫
DADcDc̄Dh δ

(
f(A(x))−h(x)

)
exp i

S[A] +

∫
d4xd4y c̄(x)

δf(Ag(x))

δg(y)

∣∣∣∣∣
g=1

c(y)− 1

2ξ

∫
d4xh2(x)


(8)

which is simplified by path integrating over h(x) to eliminate the delta functional, and find in
the exponent the gauge-fixed total action Stot

Z =

∫
DADcDc̄ exp i

S[A] +

∫
d4xd4y c̄(x)

δf(Ag(x))

δg(y)

∣∣∣∣∣
g=1

c(y)− 1

2ξ

∫
d4x f 2(A(x))


=

∫
DADcDc̄ eiStot[A,c,c̄] .

(9)

To exemplify the above construction, let us choose as gauge-fixing function

f(A) = ∂µAµ (10)

which corresponds to the Lorenz gauge for the path integral in (7), and to a weighted Lorenz
gauge for the path integral in (9) (also called Rξ gauge). Under a gauge variation δAµ = ∂µα

δf(A) = ∂µδAµ = ∂µ∂µα (11)

and one is led to interpret2

δf(Ag(x))

δg(y)

∣∣∣∣∣
g=1

∼ δf(A(x))

δα(y)
= ∂µ∂µδ

4(x− y) (12)

whose determinant (the Faddeev-Popov determinant) can be reproduced by path integrating
over the ghost fields c(x) and c̄(x). Thus, the gauge fixed action reads

Stot[A, c, c̄] = S[A] +

∫
d4x

(
−∂µc̄∂µc−

1

2ξ
(∂µAµ)2

)
. (13)

1In chiral theories where the regularization might fail to maintain gauge invariance, one speaks of anomalies.
The quantization procedure breaks down if the potential anomalies in the gauge symmetry are not canceled.

2The identification δg ∼ g−1dg gives a group invariant measure, the so-called Haar measure.
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The corresponding total lagrangian is

Ltot = −1

4
FµνF

µν − ∂µc̄∂µc−
1

2ξ
(∂µAµ)2 (14)

which, up to total derivatives that are usually dropped, may be written as

Ltot = −1

2
∂µAν∂µAν +

1

2

(
1− 1

ξ

)
(∂µAµ)2 − ∂µc̄∂µc . (15)

In particular, the Feynman gauge is obtained for ξ = 1 and gives the simple action

Ltot = −1

2
∂µAν∂µAν − ∂µc̄∂µc . (16)

The path integral is now well-defined, one can add sources, and compute propagators. In the
Feynman gauge they read

〈Aµ(x)Aν(y)〉 =

∫
d4p

(2π)4
eip(x−y) −iηµν

p2 − iε

〈c(x)c̄(y)〉 =

∫
d4p

(2π)4
eip(x−y) −i

p2 − iε
.

(17)

Exercize: Find the propagators in the Rξ gauge.
At the stage one can also add fermions to obtain the complete QED action, and note that

the ghosts can be integrated out and eliminated, as they contribute at most to an overall
normalization factor that disappears in normalized correlation functions. This will not be the
case for non-abelian gauge theories (and also for QED in curved space), but before addressing
the non-abelian case, let us discover and study a rigid symmetry that is present in the gauge-
fixed action and which has far reaching implications, the BRST symmetry.

2 BRST symmetry

The gauge-fixed action Stot is not gauge invariant anymore, as the gauge symmetry has been
fixed. However, the gauge symmetry survives in the form of BRST symmetry, a rigid symmetry
that depends on a constant anticommuting parameter Λ. For the lagrangian in the Feynman
gauge

Ltot = −1

2
∂µAν∂µAν − ∂µc̄∂µc (18)

the BRST symmetry takes the form
δBAµ(x) = Λ ∂µc(x)

δBc(x) = 0

δB c̄(x) = Λ ∂µAµ(x)

(19)

and gives δBLtot = 0, up to total derivatives. Recall that Λ, c(x) and c̄(x) anticommute (they
are Grassmann valued quantities). A crucial property of this symmetry is that it is nilpotent,
i.e. it is a Lie symmetry with a Grassmann odd parameter and satisfies

[δB(Λ1), δB(Λ2)] = 0 . (20)
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where one uses two different values of the parameter Λ. The nilpotency property is perhaps
more evident if one defines the Slavnov operator s by factorizing the constant parameter Λ as

δB(Λ) = Λs . (21)

The Slavnov operator s is a nilpotent graded variation, where graded means that it anticom-
mutes with Grassmann odd fields, and where nilpotency means that is satisfies

s2 = 0 (22)

i.e., operating twice with it gives a vanishing result on any field. Explicitly, we get from (19)
sAµ(x) = ∂µc(x)

sc(x) = 0

sc̄(x) = ∂µAµ(x)

(23)

that indeed gives

s2Aµ(x) = s2c(x) = 0 and s2c̄(x) = ∂µ∂µc(x) = 0 (24)

where the ghost equations of motion have been used in the last equation. Because one needs
to use the equations of motion, these particular BRST symmetry rules are said to be nilpotent
on-shell.

As for any rigid symmetry, there is an associated conserved current JµB, that can be found
as usual by the Noether trick, i.e. extending Λ→ Λ(x) in (19) and computing

δBStot =

∫
d4x (∂µΛ)JµB , JµB = −F µν∂νc− ∂νAν∂µc (25)

with associated BRST charge

QB =

∫
d3x J0

B =

∫
d3x (∂νA

ν ċ− F 0i∂ic) . (26)

Upon canonical quantization, this charge becomes a nilpotent operator: QB → Q̂B, Q̂2
B = 0.

There is a way of adding auxiliary fields to make the BRST symmetry nilpotent off-shell.
To see how this happens, let us consider a path integral representation3 of the delta functional
in (6)

δ(f(x)) =

∫
DB e−i

∫
d4xB(x)f(x) , (27)

and use it into the path integral (8). Then, path-integrate over h by gaussian integration. The
relevant part from (8) is∫

Dhδ
(
f(A(x))− h(x)

)
e−i

∫
d4x 1

2ξ
h2(x) =

∫
DhDB e−i

∫
d4x (B(x)[f(A(x))−h(x)]+ 1

2ξ
h2(x))

=

∫
DB ei

∫
d4x (−B(x)f(A(x))+ ξ

2
B2(x)) .

(28)

From these manipulations one finds a new total lagrangian for the fields (Aµ, c, c̄, B). As we
have taken as gauge-fixing function f(A) = ∂µAµ, the lagrangian takes the form

Ltot = −1

4
FµνF

µν − ∂µc̄∂µc−B∂µAµ +
ξ

2
B2 . (29)

3It extends the usual formula for the delta function δ(x) =
∫
dk
2π e

−ikx to the delta functional.
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Now the BRST symmetry reads 
δBAµ = Λ ∂µc

δBc = 0

δB c̄ = ΛB

δBB = 0

(30)

and is nilpotent off-shell. Recall that the fields Aµ and B are commuting (bosonic), while c
and c̄ are anticommuting (fermionic). The field c(x) is called the ghost, and corresponds to
the gauge parameter α(x), which in a sense is turned into a dynamical field, but with opposite
Grassmann character (α(x) → Λc(x)). The field c̄ is also called antighost, while the field B is
the auxiliary field (or Nakanishi-Lautrup field).

Of course, eliminating B by its algebraic equations of motion

B =
1

ξ
∂µAµ (31)

or, equivalently, path-integrating over B in the path integral, reproduces the original lagrangian
in (37), so that this checks that the new lagrangian gives an equivalent description of the same
theory, while the BRST transformations reduce to

δBAµ = Λ ∂µc

δBc = 0

δB c̄ =
1

ξ
∂µAµΛ

(32)

with nilpotency achieved only on-shell.

3 Non-abelian gauge fields

Let us apply what we discussed so far to non-abelian gauge fields. Consider the Yang-Mills
theory with lagrangian

L = −1

4
F a
µνF

aµν (33)

where F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , with infinitesimal gauge symmetry

δAaµ(x) = Dµα
a(x) = ∂µα

a(x) + gfabcAbµ(x)αc(x) . (34)

One can choose as gauge-fixing functions (one for each gauge symmetry indexed by a =
1, ..., dim G)

fa(A) = ∂µAaµ (35)

and recognize that as in (12) the Faddeev-Popov determinant arises from

δfa(A(x))

δαb(y)
= ∂µDab

µ δ
4(x− y) (36)

where the covariant derivative in the adjoint is written as Dab
µ = ∂µδ

ab+gfacbAcµ(x). Now, using
ghosts fields and considering the weighted Lorenz gauge (Rξ gauge), one finds the gauge-fixed
action

Ltot = −1

4
F a
µνF

aµν − ∂µc̄aDµc
a − 1

2ξ
(∂µAaµ)2 . (37)
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The ghosts do not decouple, as there is a covariant derivative appearing: there is a non-trivial
interaction vertex sitting inside

Lgh = −∂µc̄aDµc
a = −∂µc̄a∂µca − gfabc∂µc̄aAbµcc . (38)

Thus the ghosts enter the Feynman diagrams, and they will do their job to guarantee the
consistency of the final result.

The gauge-fixed lagrangian has a nilpotent BRST symmetry. It is simpler to introduce the
auxiliary fields Ba and present the gauge-fixed action in the form

Ltot = −1

4
F a
µνF

aµν − ∂µc̄aDµc
a −Ba∂µAaµ +

ξ

2
(Ba)2 (39)

whose BRST symmetry takes the simple form
δBA

a
µ = ΛDµc

a

δBc
a = −g

2
fabccbccΛ

δB c̄
a = ΛBa

δBB
a = 0

(40)

and is nilpotent off-shell. To recognize the BRST variation of the ghosts ca one could have
imposed the nilponency of the BRST rule on Aaµ

[δ(Λ1), δ(Λ2)]Aaµ = 0 (41)

or, more simply, in term of the Slavnov operator

s2Aaµ = 0 . (42)

Eliminating the auxiliary Ba by its equation of motion (Ba = 1
ξ
∂µAaµ) modifies the BRST

transformation rule of the antighost to

δB c̄
a = Λ

1

ξ
∂µAaµ (43)

making the BRST symmetry nilponent only on-shell.
Having found a gauge-fixed action, one can use it to generate the perturbative expansion

and Feynman diagrams. In particular, one can deduce the Feynman rules corresponding to
propagators and vertices (see ch. 72 of Srednicki, and a subsequent set of lecture notes). But
before doing that, we discuss the BRST quantization method and some of its properties. It
relies on the fact that the BRST symmetry can be used to show that physical observables do
not depend on the gauge chosen. This justifies why one uses it as a guiding principle.

4 BRST quantization

BRST quantization is an algebraic method that allows to find the complete gauge-fixed action
entering the path integral, including the ghosts and gauge-fixing terms. It is recognized by
extending the key features observed in the previous examples, and uses the BRST symmetry
as guiding principle.

We employ the non-abelian gauge theory to present the main steps of the method. The
BRST quantization consists in defining the BRST symmetry first by starting from the gauge
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invariant lagrangian. Then, by adding ghosts and a suitable set of non-minimal fields, one
presents the gauge-fixed total lagrangian by requiring it to be BRST invariant. This provides
a set-up where quite general gauges can be chosen. The crucial ingredient is the nilpotency of
the BRST symmetry.

Thus, one starts from the gauge field Aµ(x) = −iAaµ(x)T a with gauge invariant lagrangian

L =
1

2g2
tr(FµνF

µν) =
2

g2
tr

(
1

4
FµνF

µν

)
(44)

whose infinitesimal gauge symmetry is given by

δAµ(x) = Dµα(x) . (45)

The BRST symmetry on the gauge field is obtained by first introducing the ghost c(x) =
−ica(x)T a and replacing α(x) → Λc(x) in the infinitesimal gauge transformation, where Λ is
the rigid anticommuting Lie parameter of the BRST symmetry. Evidently, the BRST symmetry
on the gauge field is equivalent to a gauge transformation4

δAµ(x) = Dµα(x) → δBAµ(x) = ΛDµc(x) (46)

and the classical action is manifestly BRST invariant. Having introduces the ghost c we have
to find its BRST variation, which is obtained by requiring that the BRST transformation of
the gauge field Aµ be nilpotent

[δB(Λ1), δB(Λ2)]Aµ(x) = 0 → δBc(x) = −c(x)c(x)Λ . (47)

Note that

− c(x)c(x) = ca(x)T acb(x)T b = ca(x)cb(x)T aT b = ca(x)cb(x)
1

2
[T a, T b] = ca(x)cb(x)

i

2
fabcT c

(48)
that implies

δBc
a(x) = −1

2
fabccb(x)cb(x)Λ . (49)

It contains the structure constants of the gauge group and coincides5 with the one in (40).
Nilpotency of the BRST symmetry on the ghost is a consequence of the Jacobi identity satisfied
by the structure constants of the gauge group.

At this stage the BRST symmetry is equivalent to the original gauge symmetry. The path
integral with the ghosts has now a chance of being finite

Z =

∫
DADc eiS[A] =∞× 0 = finite (50)

but it is still useless in this form. Comparing with (3) one may identify
∫
Dc = 1

Vol(Gauge)
: it

vanishes as it represents the inverse of an infinite volume. This vanishing is mathematically
realized by the Berezin integration rules, the integrand does not contain any insertion of the
ghost c, which would be necessary to have a nonzero value of the Berezin integral.

To make the above formula more useful, one introduces additional fields, the non-minimal
fields (c̄, B), with c̄ fermionic and B bosonic6, named antighost and auxiliary field, respectively.
They carry trivial BRST transformations

δB c̄(x) = ΛB(x)

δBB(x) = 0
(51)

4The covariant derivative of a field in the adjoint is Dµα = ∂µα+ [Aµ, α], and similarly Dµc = ∂µc+ [Aµ, c].
5The coupling constant is absorbed into Aµ and c.
6Again with the expansion c̄(x) = −ic̄a(x)T a and B(x) = −iBa(x)T a.
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which are obviously nilpontent. They are used to define a gauge fermion ψ of the form7

ψ = c̄f(Aµ, B) (52)

where f(Aµ, B) plays the role of the gauge-fixing function. The BRST variation of the gauge
fermion (with the parameter Λ removed) is manifestly BRST invariant, as the BRST symmetry
is nilpotent, and that the total lagrangian defined by

Ltot = L+ sψ (53)

is BRST invariant by construction

sLtot = sL+ s2ψ = 0 (54)

(up to total derivatives, as usual).
Suitable choices of the function f(Aµ, B) deliver a gauge-fixed action that has a well-defined

path integral. It has to be path integrated over (Aµ, c, c̄, B) and can be used to generate the
perturbative expansion in terms of Feynman diagrams. A useful choice for our model is

f(Aµ, B) = ∂µAµ −
ξ

2
B → ψ = c̄

(
∂µAµ −

ξ

2
B

)
. (55)

Recalling the elementary BRST rules in terms of the Slavnov operator (21)
sAµ = Dµc

sc = −c2

sc̄ = B

sB = 0

(56)

one may evaluate the BRST transformation of the gauge fermion and obtain

sψ = B

(
∂µAµ −

ξ

2
B

)
− c̄ ∂µDµc . (57)

Then, the correctly gauge-fixed total lagrangian is

Ltot =
1

4
FµνF

µν − c̄ ∂µDµc+B∂µAµ −
ξ

2
B2 . (58)

It compares successfully with (39), after reinstating the overall normalized trace 2
g2

tr.
Comments:
• One can introduce a ghost number by assigning ghost number 1 to the ghost c, and ghost

number −1 to the antighost c̄. Other fields have vanishing ghost number. The ghost number
helps to classify the various quantities: the action has ghost number 0, the s operator changes
ghost number by 1 (i.e. it has ghost number 1), and the gauge fermion Ψ =

∫
d4xψ has ghost

number −1.
• The nilpontecy of the BRST symmetry brings in the concept of cohomology. It is used

to identify the physical (i.e. gauge invariant) observables as cohomology classes: physical
observables are BRST invariant functions, while two BRST invariant functions differing by the
BRST variation of any function belong to the same class and thus identify the same physical
observable.

7For notational simplicity we neglect an overall 2
g2 tr(· · · ), that must be reinstated at the end.

9



• S and Stot = S + sΨ are equivalent and give the same physical results for any gauge
fermion Ψ =

∫
d4xψ.

• The BRST quantization is a very general approach. It can be applied to all cases where
the gauge algebra has constant structure functions and closes off-shell (no equations of motions
are needed to verify the closure of the gauge algebra). For example, it can be used to quantize
gravity (i.e. the Einstein-Hilbert action), which however remains a non-renormalizable theory.
• More general theories, as for example supergravity, are often described by open gauge

algebras8. Then, more general schemes are needed to get the correct gauge-fixed action. The
Batalin-Vilkovisky method is such a scheme. It embeds the BRST method, and uses furthers
concepts (antifields and antibrackets).

4.1 Application: gauge-fixing of perturbative quantum gravity

A further application of the BRST method is the gauge-fixing of the Einstein-Hilbert action
for perturbative quantum gravity. In this theory the dynamical field is the metric tensor gµν(x)
that defines the invariant length element in spacetime

ds2 = gµν(x)dxµdxν . (59)

The action for the Einstein’s theory of gravity is the Einstein-Hilbert action

SEH [gµν ] =
1

2κ2

∫
d4x
√
gR(g) (60)

where g = | det gµν |, R(g) is the Ricci scalar built from gµν , and κ2 = 8πG with G the Newton
constant. κ is taken as the coupling constant of the theory. Our conventions follow from the
definition of the covariant derivative ∇µ, defined on vectors fields by

∇µV
ν = ∂µV

ν + ΓνµρV
ρ , ∇µWν = ∂µWν − ΓρµνWρ (61)

where the Christoffel symbols Γρµν (the components of the Levi-Civita connection) is

Γρµν =
1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν) . (62)

Covariant derivatives do not commute and are used to define the curvature tensors by

[∇µ,∇ν ]V
ρ = Rµν

ρ
σV

σ , Rµν = Rρµ
ρ
ν , R = gµνRµν (63)

known as Riemann tensor, Ricci tensor, and Ricci scalar, respectively. Then, one finds the
explicit formula in terms of the connection

Rµν
ρ
σ = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ

= ∇̂µΓρνσ − ∇̂νΓ
ρ
µσ

(64)

where in the last line we wrote a mnemonic, where the symbol ∇̂µ denotes a covariant derivative
acting only on the upper index of the Christoffel symbols. Using recursively all these relations,
one finds the Einstein-Hilbert action as a functional of the metric, whose variations leads to the
Einstein’s equations in vacuum. This action is a scalar under arbitrary change of coordinates,
which constitutes a gauge symmetry of the theory.

8Equations of motions are needed to close the algebra of the gauge symmetries.
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An arbitrary change of coordinates (known also as diffeomorphism or reparametrization)

xµ → x′µ(x) (65)

from old coordinates xµ to new coordinates x′µ induces a change in the metric given by the
tensorial law

gµν(x) → g′µν(x
′) = gαβ(x)

∂xα

∂x′µ
∂xβ

∂x′ν
. (66)

Under an infinitesimal change of coordinates parametrized by the vector field ξµ(x)

xµ → x′µ = xµ − ξµ(x) (67)

the metric transforms as

δgµν(x) = g′µν(x)− gµν(x) = ξρ(x)∂ρgµν(x) + ∂µξ
ρ(x)gρν(x) + ∂νξ

ρ(x)gµρ(x)

= ∇µξν(x) +∇νξµ(x)
(68)

as deduced from the finite transformation rule given above. There are 4 independent gauge
functions contained in the infinitesimal vector field ξµ.

Perturbatively, for small fluctuations around Minkowski space, one splits the metric as

gµν(x) = ηµν + κhµν(x) (69)

where hµν(x) is the field whose quanta are the “gravitons”. The action expanded in terms of
hµν(x), contains a quadratic part which identifies the graviton propagator after gauge-fixing
plus an infinite number of vertices

SEH [gµν ] = S2[hµν ] +
∞∑
n=3

Sn[hµν ] . (70)

The action is fully nonlinear in hµν(x) and vertices of any order are present. The vertices
have a quite complicated structure, but the quadratic part is easily derivable, see appendix. It
contains a kinetic operator that is not invertible because of the gauge symmetry (68), thus one
cannot obtain directly the propagator for hµν and a gauge-fixing is required.

Let us apply the BRST method. To start with the BRST quantization of (60), we first
introduce the ghost cµ by letting the gauge parameters ξµ(x)→ Λcµ(x), and define the BRST
rule on the metric gµν by

δBgµν = Λ(∇µcν +∇νcµ) . (71)

Requiring nilpotency fixes the BRST transformation rule of the ghosts

δBc
µ = Λcν∂νc

µ . (72)

This calculation is algebraically lenghty, but geometrical considerations simplify the task. To
that purpose, let us notice that the gauge symmetry is generated by the Lie derivatives along
ξµ (denoted by £ξ), which translates into the fact that (68) may be rewritten as

δgµν = £ξ gµν (73)

(said differently, this defines the Lie derivative on the metric). More generally, any tensor
transforms under the infinitesimal change of coordinates (67) by its Lie derivative along ξµ. In
particular, a scalar field φ transforms as

δφ = £ξ φ = ξµ∂µφ (74)
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which would give a BRST transformation

δBφ = Λcµ∂µφ . (75)

It is now simpler to study the nilpotency on the scalar φ to fix the BRST rule of the ghosts.
This amounts to extract the structure constants of the algebra of the diffeomorphisms. Writing
δBc

µ = Λscµ in terms of the Slavnov variation s we impose

0 = [δB(Λ1), δB(Λ2)]φ = 2Λ2Λ1(scµ∂µφ− cν∂νcµ∂µφ) (76)

that fixes
scµ = cν∂νc

µ → δBc
µ = Λcν∂νc

µ . (77)

This rule captures the structure constants carried by the commutator of the Lie derivatives

[£ξ,£η] = £[ξ,η] (78)

which is the gauge algebra of the group of diffeomorphisms. Thus, we have found the BRST
transformations that contain the information on the structure constants of the gauge group

δBgµν = Λ(∇µcν +∇νcµ)

δBc
µ = Λcν∂νc

µ .
(79)

Now, to implement a gauge-fixing we add non-minimal fields c̄µ, Bµ with trivial BRST
transformations

δB c̄µ = ΛBµ

δBBµ = 0 .
(80)

A convenient gauge choice uses the functions

fµ = ∂ν(
√
ggνµ) (81)

which fix the harmonic gauge (de Donder gauge) when set to zero. We use it in the gauge
fermion

ψ = c̄µ(∂ν(
√
ggνµ) + αgµνBν) (82)

which has the property of identifying a particularly simple graviton propagator for α = 1
2
.

At this stage we have constructed the gauge-fixed action for pure gravity, which is given by

Stot = SEH + sΨ (83)

with Ψ =
∫
d4xψ. This total action is manifestly BRST invariant. It is the starting point for

the perturbative treatment of quantum gravity.

4.2 Graviton propagator in flat space

The gauge-fixed gravitational action (83) is algebraically quite complex, and perturbative cal-
culation in quantum gravity are notoriously difficult.

Let us work out some details keeping only the quadratic approximation in hµν , that leads
to the perturbative propagator of the graviton (and ghosts). Expanding the Einstein-Hilbert
action (60) to quadratic order in hµν one finds9

S2[h] =

∫
d4x

1

4

{
hµν∂2hµν −

1

2
h∂2h+ 2

(
∂νhνµ −

1

2
∂µh
)2}

(84)

9Details of the calculation may be found in appendix A.
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with h ≡ ηµνhµν . Raising/lowering of indices is done with the flat metric ηµν . This quadratic
action has a gauge symmetry under the linearized version of (68), that at lowest order reads

δhµν(x) = ∂µξν + ∂νξµ (85)

with ξµ = ηµνξ
ν . The gauge fixing function (81) linearizes to the condition

fµ = −
(
∂νh

νµ − 1

2
∂µh

)
(86)

which inserted in the gauge fermion

ψ = c̄µ(fµ + αBµ) (87)

gives a BRST variation

sψ = Bµ(fµ + αBµ) + c̄µ∂
2cµ ∼ − 1

4α
f 2 + c̄µ∂

2cµ (88)

where in the last expression the Bµ equations of motion have been used. Setting α = 1
2

gives
the simplest form of the total gauge-fixed action

S2,tot = S2[h] + sΨ =

∫
d4x

{1

4
hµν∂2hµν −

1

8
h∂2h+ c̄µ∂

2cµ
}
. (89)

It is now a simple matter to get the propagators. The quadratic lagrangian for hµν is cast as

Lh =
1

2
hµνP̃

µν,αβ∂2hαβ (90)

in terms of the tensor

P̃ µν,αβ =
1

4
(ηµαηνβ + ηµβηνα)− 1

4
ηµνηαβ (91)

which in arbitrary D dimensions has an inverse given by

Pµν,αβ = ηµαηνβ + ηµβηνα −
2

D − 2
ηµνηαβ (92)

that satisfies

P̃ µν,αβPαβ,ρσ =
1

2
(δµρ δ

ν
σ + δνρδ

µ
σ) . (93)

The propagators are then given by

〈hµν(x)hαβ(y)〉 =

∫
dDp

i(2π)D
eip(x−y) Pµν,αβ

p2 − iε

〈cµ(x)c̄ν(y)〉 =

∫
dDp

i(2π)D
eip(x−y) ηµν

p2 − iε
.

(94)

They are valid in arbitrary dimensions, but of course one can set directly D = 4.
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5 Cohomology

The power of the BRST symmetry is due to its nilpotency, that allows to define the concept of
cohomology. The cohomology is a vector space made up of elements that are equivalence classes.
Different equivalent classes are identified with different physical observables, corresponding to
gauge invariant observables. For that purpose let us make an aside and review the concept of
cohomology.

Let us consider a vector space V and a linear operator δ : V −→ V such that δ2 = 0. Such
an operator is called nilpotent. One defines the kernel of δ, denoted by Ker(δ), as all elements
α ∈ V such that δα = 0

Ker(δ) = {α ∈ V | δα = 0} . (95)

Its elements are vectors that are said to be closed, and often called “cocycles”. Then, one
defines the image of δ, denoted by Im(δ), as all elements β ∈ V such that there exists an
element γ ∈ V for which β = δγ

Im(δ) = {β ∈ V | ∃γ ∈ V for which β = δγ} . (96)

Its elements are vectors that are said to be exact, and often called “coboundaries”. Clearly,
all exact elements are closed, Im(δ) ⊆ Ker(δ), because of nilpotency. However, not all closed
elements may be exact. The cohomology measures the amount of non-exactness of closed
elements. It is defined as the set of equivalence classes [α] of closed elements that differ by
exact elements

α ∼ α′ if α′ = α + δγ . (97)

The space of equivalent classes is denoted by

H(δ) =
Ker(δ)

Im(δ)
(98)

and is called the group of cohomology, or simply cohomology, see Figure 3.

V Vδ

Ker

Im

Ker

V Vδ

Figure 3: The cohomology measures the amount of non-exactness of closed elements. It is
nontrivial when Im(δ) ⊂ Ker(δ). The right-hand side depicts the case of vanishing cohomology,
Im(δ) = Ker(δ), where all closed elements are exact.

Returning to the BRST construction discussed previously, the Slavnov operator s is a nilpo-
tent operator. It acts on functional of the fields, which include ghosts and non-minimal fields.
Physical observables are defined to be BRST invariant quantities, i.e. annihilated by the opera-
tor s that defines the infinitesimal BRST transformations (the BRST symmetry takes the role
of gauge invariance in the gauge fixed theory). Physical observables that differ by the BRST
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variation of some other quantity must be identified as equivalent: thus physical observables are
defined by the cohomology classes of s. For example, the action is a nontrivial cohomological
element at vanishing ghost number

S ∼ Stot = S + sΨ . (99)

Similarly, in canonical quantization, the BRST charge Q becomes an operator Q̂. It is the
Noether charge associated to the BRST symmetry, that becomes an operator upon canonical
quantization. It has the properties of being hermitian, with ghost number one, and nilpotent
Q̂2 = 0. As all charges, like the hamiltonian, it has a dual role:
i) it is a conserved quantity due to a Lie symmetry of the system, the BRST symmetry
ii) it is the generator of that Lie symmetry on the system under study.

Physical states are defined by the cohomology of Q̂ on the full BRST Hilbert space at
vanishing ghost number. That is, physical states are given by vectors of the Hilbert space at
vanishing ghost number that are BRST invariant, and thus satisfy Q̂|ψph〉 = 0. In addition,
physical states are equivalent if they differ by the BRST variation of another state: |ψph〉 and

|ψ′ph〉 are equivalent if they are related by |ψ′ph〉 = |ψph〉+ Q̂|χ〉 for some |χ〉. Similarly, physical
operators are defined by cohomology classes: they are BRST invariant operators, meaning that
they commute in a graded sense with the BRST charge Q̂, i.e. [Q̂, Âph} = 0, and with an

equivalence relation given by Âph ∼ Â′ph = Âph + [Q̂, B̂} for some operator B̂.
One may check that matrix elements of physical operators between physical states do not

depend on the representative chosen in the respective classes of equivalence, namely

〈ψph|Âph|φph〉 = 〈ψ′ph|Â′ph|φ′ph〉 . (100)

For example, if |φ′ph〉 = |φph〉+ Q̂|χ〉, then

〈ψph|Âph|φ′ph〉 = 〈ψph|Âph|φph〉+ 〈ψph|ÂphQ̂|χ〉 (101)

but the last term vanishes as 〈ψph| and Âph are physical, so that

〈ψph|ÂphQ̂|χ〉 = 〈ψph|[Âph, Q̂]|χ〉+ 〈ψph|Q̂Âph|χ〉 = 0 (102)

where we have taken Âph to be bosonic for simplicity. Thus

〈ψph|Âph|φ′ph〉 = 〈ψph|Âph|φph〉 . (103)

Note that the full BRST Hilbert space cannot have a positive norm. For example, exact
states like Q̂|χ〉 have vanishing norm, as

|Q̂|χ〉|2 = 〈χ|Q̂Q̂|χ〉 = 0 (104)

where we have used the hermiticity of Q̂ and its nilpotence. However, it is only important that
the norm in the physical sector of the Hilbert space be positive definite.

For further details, please refer to chapter 74 of Srednicki.

6 Batalin-Vilkovisky and the antibracket

This topic is optional and has not been discussed in class.
The method of Batalin-Vilkowsky generalizes the BRST scheme by adding to the action external
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sources that couple to the BRST variation of the fields. This set-up was originally considered by
Zinn-Justin to derive useful Ward identities and study the renormalizability of gauge theories.

For each field φA(x) one introduces a source φ∗A(x) of opposite Grassmann character, and
adds to the lagrangian the term φ∗Asφ

A, where sφA is the Slavnov variation of the field φA.
The sources φ∗A are called antifields and are not to be path integrated over. They are external
sources used for inserting the BRST variation of fields inside correlation function. It is actually
convenient to redefine some signs to have a simpler notation in what follows.

To introduce this method, let us consider the case of the Yang-Mills theory with gauge
invariant lagrangian L = −1

4
F a
µνF

aµν . We redefine the ghost field by a sign setting

αa(x) = ca(x)Λ (105)

and redefine the Slavnov variation for any field φ(x) by setting

δB(Λ)φ(x) = sφ(x)Λ (106)

i.e. we remove Λ from the right. Then, the BRST variations are
sAaµ = Dµc

a

sca =
g

2
fabccbcc

sc̄a = −Ba

sBa = 0

(107)

and the total gauge-fixed lagrangian obtained using the gauge fermion Ψ = c̄a
(
ξ
2
Ba − ∂µAaµ

)
is

Ltot = L+ sΨ = −1

4
F a
µνF

aµν +
ξ

2
BaBa −Ba∂µAaµ + c̄a∂µDµc

a . (108)

The Batalin-Vilkowsky (BV) set-up goes as follows. For each field in φA = (A,µc
a, c̄a, Ba) one

adds external sources of opposite Grassmann character, φ∗A = (A∗µ, c
∗a, c̄∗a, B∗a), the antifields,

and couples them to the BRST variations of the fields. Adding them to the action one finds
the more general action

S[φA, φ∗A] =

∫
d4x

(
−1

4
F a
µνF

aµν − ∂µc̄aDµc
a −Ba∂µAaµ +

ξ

2
(Ba)2 + A∗µa Dµc

a + c∗a
g

2
fabccbcc − c̄∗aBa

)
.

(109)
The BRST invariance of the original total action can be written as

δB(Λ)Stot =

∫
d4x

δRStot
δφA(x)

δB(Λ)φA(x) =

∫
d4x

δRStot
δφA(x)

sφA(x)Λ

=

∫
d4x

δRStot
δφA(x)

δLS

δφ∗A(x)
Λ =

∫
d4x

δRS

δφA(x)

δLS

δφ∗A(x)
Λ = 0 .

(110)

Defining the antibracket, that for any two functionals of φA(x) and φ∗A(x) is given by

(F,G) =

∫
d4x

(
δRF

δφA(x)

δLG

δφ∗A(x)
− δRF

δφ∗A(x)

δLG

δφA(x)

)
. (111)

and dropping the anticommuting Λ, one finds that eq. (110) takes the form

(S, S) = 0 , (112)
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an equation named master equation in this context. A similar equation holds for the effective
action Γ defined to depend on the mean fields φA and corresponding antifields φ∗A

(Γ,Γ) = 0 , (113)

It constitutes a set of Ward identities that are used to study the renomalizability of gauge
theories through cohomological methods. We will not describe this topic in these lectures.

Batalin-Vilkovisky (BV) generalized this construction to develop a method for gauge-fixing
any gauge theory. Using an hypercondensed notation, it goes as follows. They started with
the original action Scl[φ

i] with gauge symmetries δφi = Ri
αξ

α, and introduced the ghosts cα

associated with the gauge symmetries by letting the local parameters turn into the ghosts
ξα = cαΛ (note the new definition for factorizing out Λ, which redefines some fields by a sign
with respect to previous treatments). Then, having defined a set of minimal fields φa, as given
by the original fields plus the ghosts φa = (φi, cα), BV required the action to be a proper
solution of the master equation

(S, S) = 0 (114)

with boundary conditions
S|φ∗a=0 = Scl[φ

i]

∂LS

∂φ∗i

∣∣∣
φ∗a=0

= Ri
αc
α (115)

where “proper” means that all gauge symmetries are taken care of in terms of BRST variations
coupled to the antifields, i.e. they are all included in the second equation above. The action
with the antifields that solves the master equation has a double role:
i) it gives the action (with sources) and thus defines the dynamics,
ii) it acts as generator of BRST transformations through the antibracket.
The BRST rules on the fields indeed are given by

δB(Λ)φa = (φa, S)Λ . (116)

The master equation amounts to require the BRST invariance of the action S, with S acting
also as generator of the BRST transformation through the antibracket.

For gauge algebras that close off-shell, and with constant structure functions, the antibracket
fixes the BRST rule of the ghosts. For YM the action satisfying this master equation reads

S[A, c, A∗, c∗] =

∫
d4x

(
−1

4
F a
µνF

aµν + A∗aµDµca + c∗a
g

2
fabccbcc

)
. (117)

Technically, the solution must be “proper”, meaning that all the gauge symmetries must be
included together with their own ghosts. In general, one may prove that the proper solution
contains all information about the gauge symmetries, their Jacobi identities, and the gener-
alization of the Jacobi identities that appear when the structure constants become functions
and/or the case of gauge symmetries that close only on-shell.

At this stage this solution is not enough to perform a gauge-fixing, so one adds to the model
non-minimal fields φα with trivial BRST transformation rules, and of course their respective
antifields. For our case these new fields are (c̄a, Ba) and (c̄∗a, B

∗
a). The extended action

S[φA, φ∗A] =

∫
d4x

(
−1

4
F a
µνF

aµν + A∗aµDµca + c∗a
g

2
fabccbcc + c̄∗aB

a

)
(118)
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where now φA = (φa, φα) = (A, c, c̄, B) still solves the master equation in an obvious way
(we have redefined Ba → −Ba for simplicity with respect to the previous construction). The
non-minimal fields do not modify the cohomology, and physical observables remain the same.

Now the gauge-fixing is achieved by selecting a gauge-fermion functional Ψ, and computing
the total gauge fixed action by setting the antifields equal to the variation of the gauge fermion
under the corresponding fields, i.e.

Stot[φ
A] = S

[
φA, φ∗A =

δΨ

δφA

]
. (119)

As an example, using the gauge fermion

Ψ =

∫
d4x c̄a

(
∂µAaµ +

ξ

2
Ba

)
(120)

one finds 

A∗aµ =
δΨ

δAaµ
= −∂µc̄a

c∗a =
δΨ

δca
= 0

c̄∗a =
δΨ

δc̄a
= ∂µAaµ +

ξ

2
Ba

(121)

and substitution into (118) reproduces the gauge-fixed lagrangian (39) (up to the redefinition
Ba → −Ba which has no consequence). Note that, for an anticommunting object like Ψ, left
and right derivatives coincide, δLΨ

δφA
= δRΨ

δφA
.

The crucial point justifying this whole construction is that the action with antifields that
satisfies the master equation (114) guarantees that physical observables do not depend on the
choice of Ψ, even though many choices are of no practical use, as for example Ψ = 0. This
means that, formally, the path integral

Z =

∫
DφeiS[φA, φ∗A=δΨ/δφA] (122)

can be shown to be independent of the gauge fermion Ψ.

A derivation of the master equation

Let us consider the path integral in (122) and check under which condition it is really indepen-
dent on the gauge fermion Ψ = Ψ[φ], a Grassmann odd functional of the fields only. Of course,
for Ψ = 0 the path integral is ill defined, but for suitable choices of Ψ this singular point might
be resolved, making the path integral well-defined.

Let us calculate its variation δZ under a change δΨ of Ψ. In a hypercondensed notation we
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get 10

δZ =

∫
Dφ

∂δΨ

∂φA

( ∂L
∂φ∗A

eiS[φ, φ∗]
)∣∣∣

φ∗=∂Ψ/∂φ

=

∫
Dφ

∂RδΨ

∂φA

( ∂L
∂φ∗A

eiS[φ, φ∗]
)∣∣∣

φ∗=∂Ψ/∂φ

= −
∫
Dφ δΨ

∂R
∂φA

( ∂L
∂φ∗A

eiS[φ, φ∗]
)∣∣∣

φ∗=δΨ/δφ

= −
∫
Dφ δΨ

( ∂R
∂φA

∂L
∂φ∗A

eiS[φ, φ∗] +
∂R
∂φ∗B

∂L
∂φ∗A

eiS[φ, φ∗] ∂R
∂φA

∂LΨ

∂φB

)∣∣∣
φ∗=δΨ/δφ

= −
∫
Dφ δΨ

∂R
∂φA

∂L
∂φ∗A

eiS[φ, φ∗]

(123)

which vanishes if
∂R
∂φA

∂L
∂φ∗A

eiS[φ, φ∗] = 0 . (124)

In the derivation we have formally integrated by parts in the path integral, and noted that the
second term in the last-but-one line vanishes in the sum over indices.

The vanishing of (124) amounts to requiring the “quantum master equation”

(S, S) = 2i∆S (125)

where

∆S ≡ ∂R
∂φA

∂L
∂φ∗A

S (126)

This last term is highly singular and can often be set to vanish (that is indeed the case if there
are no anomalies in the BRST symmetry), and the condition reduces to the “classical master
equation”

(S, S) = 0 (127)

that we have already discussed.

Solution with an open gauge algebra

Consider an action S[φ] where all dynamical fields are collectively denoted by φi. We employ
an hypercondensed notation where the index i stands for all possible indices which the fields
may depend on, including the spacetime position. The equations of motion can be written as

S,i ≡
∂RS

∂φi
= 0 (128)

and we assume that there are gauge symmetries that we write as

δφi = Ri
αξ

α (129)

where ξα are infinitesimal arbitrary parameters and the quantity Ri
α is in general field depen-

dent. The fact that is a symmetry means that

δS = S,iR
i
αξ

α = 0 (130)

10Note that left and right derivatives of an anticommuting quantity Ψ coincide.

19



and it is a gauge symmetry if the index α includes the time coordinate (or spacetime coordinates
for relativistic theories) and the parameters ξα depending arbitrarily on it.

Let us now comment study the algebraic structure of the symmetries. The product of two
transformations of the type (129) will still leave the action invariant, and it is natural to consider
the commutator algebra (the Lie algebra) We shall assume, without loss of generality, that the
set of symmetries is complete, i.e. all independent symmetries are taken into account by the
general formula in (129). We will also assume that these symmetries are linearly independent
(if this is not the case the algebra is called reducible). The commutator algebra will then be of
the general form

[δ(ξ1), δ(ξ2)]φi = (Ri
α,jR

j
β − (−)ξ

αξβRi
β,jR

j
α)ξβ1 ξ

α
2 = Ri

γf
γ
αβξ

β
1 ξ

α
2 + S,jE

ji
αβξ

β
1 ξ

α
2 . (131)

The last step follows since, by assumption, the original set of symmetries is complete and the
most general thing that can happen is that the algebra closes modulo on-shell trivial symmetries
(these on-shell trivial symmetries, which take the general form δφi = S,jE

ji with Eji graded
antisymmetric but otherwise arbitrary, are present in any field theory; they vanish on shell
and do not imply the absence of degrees of freedom from the theory). The structure functions
fγαβ and the coefficients Eij

αβ, graded antisymmetric in α, β and i, j, characterize the classical

symmetry algebra. If the coefficients Eij
αβ are non-zero, one speaks of an open algebra. By using

ghosts fields cα, fields of opposite statistics than the symmetry parameters ξα, the relation (131)
can be cast in the following way

(−)ξ
α

(2Ri
α,jR

j
β −R

i
γf

γ
αβ − S,jE

ji
αβ)cβcα = 0 (132)

Additional relations and higher order structure functions are obtained by considering Jacobi
identities. They will be taken care of by the the antibracket formalism of Batalin-Vilkovisky.
For the fields φA = (φi, cα) one introduces the antifields φ∗A = (φ∗i , c

∗
α) and one ask to satisfy

the classical master equation
(S, S) = 0 (133)

with boundary condition

S|φ∗A=0 = Scl[φ
i] ,

∂LS

∂φ∗i

∣∣∣∣∣
φ∗A=0

= Ri
αc
α (134)

where we denoted by Scl the original action.
To see how the gauge algebra is cast into S[φA, φ∗A], let’s consider the simple case in which

higher order structure functions do not arise in the Jacobi identities. One expand S into powers
of antifields

S = S0 + S1 + S2 + ... (135)

and the master equation (133) splits into several pieces

(S0, S0) = 0 (136)

(S0, S1) = 0 (137)

(S1, S1) + 2(S0, S2) = 0 (138)

(S0, S3) + (S1, S2) = 0 (139)

· · · · · · · · · · · · (140)

Employing the boundary conditions (134), one sees that eq.(136) is trivially satisfied since S0

does not depend on antifields, eq.(137) is the statement about the invariance of Scl, eq.(138)
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describe the algebraic closure given in (132), and eq.(139) is automatically satisfied because we
restricted ourselves to the situation in which the higher order structure functions vanish. In
this case, the general solution of the master equation reads

S = Scl + φ∗iR
i
αc
α +

1

2
c∗γ(−)ξ

α

fγαβc
βcα − 1

4
φ∗iφ

∗
j(−)ξ

α+φiEji
αβc

βcα . (141)
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A Quadratic approximation of Einstein-Hilbert action

Some of the details are as follows: the metric is expanded as

gµν(x) = ηµν + hµν(x) (142)

where now we absorb the coupling constant κ in hµν . Then, at linear order

gµν(x) = ηµν − hµν(x) , g = | det gµν | = 1 + h ,
√
g = 1 +

1

2
h (143)

with indices raised/lowered with the flat metric ηµν . The Christoffel symbols linearize as

Γρµν =
1

2
ηρσ(∂µhνσ + ∂νhµσ − ∂σhµν) , (144)

the Riemann tensor as

Rµν
ρ
σ = ∂µΓρνσ − ∂νΓρµσ + .... =

1

2
∂σ(∂µhν

ρ − ∂νhµρ)−
1

2
∂ρ(∂µhνσ − ∂νhµσ) , (145)

and the Ricci tensor as

Rνσ = Rµν
µ
σ =

1

2
(∂ν∂

µhσµ + ∂σ∂
µhνµ − ∂ν∂σh− ∂2hνσ) . (146)

To get the quadratic approximation, let us review how to vary the Einstein-Hilbert action
to get the equations of motion. It is useful to start by considering the first order formalism,
defined by the action that depends on the metric and Christoffel symbols independently

SEH [g,Γ] =
1

2κ2

∫
d4x
√
ggµνRµν(Γ) (147)

The equation of motions of gµν give

Rµν(Γ)− 1

2
gµνg

αβRαβ(Γ) = 0 (148)

while the equations of motion from varying Γρµν give algebraic equations whose solutions are
precisely the ones defining the Christoffel symbols in terms of the metric. This solution can
be substituted back into the action and in (148). The latter gives the Einstein equation in its
second order form

Rµν(g)− 1

2
gµνR(g) = 0 . (149)

These equations could be obtained as well from the action in the second order form, but
varying only the

√
ggµν part, the remaining gµν dependence does not need to be considered as

that variation automatically vanishes (schematically δRµν
δg

= δRµν
δΓ

δΓ
δg

, but δRµν
δΓ

vanish so does
δRµν
δg

). Thus, at the linear order the variation of the Einstein-Hilbert action in the second order
formulation is written as

δSEH [g] =
1

2κ2

∫
d4x
√
g δgµν

(
Rµν(g)− 1

2
gµνR(g)

)
. (150)

For a second variation, needed to identify the quadratic approximation, only the linear varia-
tions of R and Rµν are needed, as all other term would vanish when setting gµν(x) = ηµν .
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Therefore, at the quadratic order one has to keep only the terms that will contribute, i.e.

S2 =
1

2κ2

∫
dDx

(
1 +

1

2
h

)
(ηνσ − hνσ)

1

2
(∂ν∂

µhσµ + ∂σ∂
µhνµ − ∂ν∂σh− ∂2hνσ) (151)

leading to (after some integration by parts to collect similar terms)

S2 =
1

4κ2

∫
dDx (hµν∂2hµν − h∂2h+ 2h∂µ∂νhµν + 2(∂µhµν)

2). (152)

Finally, redefining hµν → κhµν , using some further integration by parts, and grouping terms,
one obtains (84).
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