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Non-abelian gauge theories:
path integral and gauge fixing

(Lecture notes - a.a. 2020/21)

Fiorenzo Bastianelli

1 Faddeev-Popov

The quantization of gauge theories requires additional considerations for constructing a well-
defined QFT and its perturbative expansion. The problem is clear in the path integral approach,
where a naive path integral quantization gives a diverging result. Let us reconsider the case of
the abelian U(1) theory (free electromagnetism)

S[A] = / d*x (-iFWFW)

| 1)
7 = /DAe’S[A] ~ 00

where F,, = 0,A, — 0,A,. Here the path integral diverges because one is summing over an
infinite number of gauge equivalent configurations

Aux) = Al(z) = Au(2) +ig()d,g (), g(z) =W e U(1) (2)

which have the same value of the action, S[AY] = S[A]. The field space decomposes into
inequivalent gauge orbits, as in figure
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Figure 1: Gauge orbits

One would like to define the path integral in such a way of getting a finite and gauge
invariant result

DA ,
z= [ DA s inige 3

/Vol(Gauge) ‘ He (3)
This can be done using a gauge fixing function a la Faddeev-Popov, where unphysical ghost
fields are introduced to exponentiate a measure factor. Ideally, the gauge fixing function should
pick just one representative from each gauge orbits, as sketched in figure
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Figure 2: Gauge fixing by the condition f(A) =0

The gauge-fixed action thus obtained exhibits a global symmetry, called BRST symmetry,
which is a remnant of the gauge symmetry and which is very powerful to prove many prop-
erties of quantum gauge theories. In particular, it can be used to prove the independence of
physical quantities from the gauge-fixing function. It is also the basis of the BRST lagrangian
quantization method, which generalizes the Faddeev-Popov method to more general cases. An
even more powerful method uses additional fields (the so-called antifields) and is known as the
Batalin-Vilkovisky method.

Let us start describing the Faddeev-Popov method in the case of the free abelian gauge
theory. The trick it to use a gauge-fixing condition, as depicted in figure [2 and insert the
identity (written in a suitable way) in the path integral so to extract the volume of the gauge
group. Consider the identity written as

1= [apaes) = [ a5 ()

which generalizes to n-dimensions (with f that becomes a vector with n components)

1= [arrain) = [ayae (P50 5050 )

We generalize this to functional integrals that we use to write the identity formally as

1= / Dy 6<f(A9(as))>Det (%(gg))) (6)

where Dg is a suitable gauge invariant measure producing the volume of the gauge group,
| Dg = Vol(Gauge). ‘Det’ indicates a functional determinant. Note that the delta function
(more properly one should call it “delta functional”) §( f(z)) here means that the whole function
f(x) is set to vanish.

Then let us compute in a formal way the path integral in (109)) inserting the identity in @
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which is the gauge-fixed path integral we were looking for. In these manipulations we have first
inserted the identity @, and then used the fact the action and measure are gauge invariant,
namely S[AY] = S[A] and DAY = DA. This is certainly true for the classical action, but it
is an assumption for the measure (more concretely it is related to the regularization methods
used to make sense of the diverging Feynman diagrams of the perturbative expansion). Then,
we have changed variables from A9 to A, so that nothing depends on g(x) anymore, and the
integration on Dg can be factorized to cancel the infinite gauge volume Vol(Gauge).

The final formula is correct but can be written in more a useful form by:
(1) introducing anticommuting fields ¢(x) and ¢(z) to exponentiate the Faddeev-Popov deter-
minant (the ghosts),
(71) modifying the gauge fixing function to get rid of the functional delta function from the
path integral: instead of setting f(A(z)) = 0 one may set it to f(A(x)) = h(x), with h(z)
an arbitrary function, and then functionally average over the functions h(z) with a gaussian
weight e~2€ /" The rationale is that different gauge fixing functions should give the same
gauge invariant result.

Thus we find

7 = /DADCDEDh(S(f(A(:C))—h(ﬂ:)) exp i <S[A] + /d4xd4y E(x)%(?(j))c(y) — 2—1§/d4(5;;12(37)>

which is then simplified by path integrating over h(z) to eliminate the delta functional and find
in the exponent a gauge-fixed total action S

0f(A(z)) 1

Z = / DADcDE expi (S[A] + / d*zdy &(x) 50s) cly) — %

&z fQ(A(w)))
©)
= / DADcDg etStetlAed

To exemplify the above construction, let us choose as gauge-fixing function
f(A) = 0"A, (10)

which corresponds to the Lorenz gauge for the path integral in , and to a weighted Lorenz
gauge for the path integral in @ (also called R, gauge). Under a gauge variation 04, = J,«

§f(A) = 0"6A, = 0"0,« (11)
and one is led to interpret]

0f(A(x)) 0f(A(x))
6g(y) da(y)

whose determinant (the Faddeev-Popov determinant) can be reconstructed using the ghost
fields ¢(x) and ¢é(x). Thus, the gauge fixed action reads

= 09,04z — ) (12)

1
Stot[Ay C, E] = S[A] + /d4$ (—3“6@@ — 2—5(8#14“)2) . (13)
The corresponding total lagrangian is
1 1
‘Ctot = _ZFNVFNV - 8“6(%6 - Q_S(aMAM)Q (]_4)

!The identification dg ~ g~'dg gives a group invariant measure, the so-called Haar measure.
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which (up to total derivatives that are usually dropped) may be written as

Lowawsy qvo (11 _
Liow = —50" A0, A" + (5 - E) (0"A,)? — 9"ed,c . (15)

In particular, the Feynman gauge is obtained for £ = 1 and gives the simple action
1
/v‘tot = —éﬁ“AyﬁuAl, — 8#58#0 . (16)

The path integral is now well-defined, and one can add sources and compute the propagators.
In the Feynman gauge they read

d'p —in

A (2)A(y) = ip(e—y) — v

(A,(@)A, () /(We e
d*p —1

(ela)etn)) = [ gz ere ) =

At the stage one can also add the fermions to obtain the complete QED action and note
that the ghosts can be integrated out and eliminated, as they contribute at most to an overall
normalization factor that disappears in normalized correlation functions. This will not be the
case for non-abelian gauge theories (and in fact also for QED in curved space), but before
addressing them let us study a rigid symmetry that emerges in the gauge-fixed action and
which has far reaching implications, the BRST symmetry.

(17)

2 BRST symmetry

The gauge-fixed action Sy, is not gauge invariant anymore, as the gauge symmetry has been
fixed. However, the gauge symmetry survives in the form of BRST symmetry, a rigid symmetry
that depends on a constant anticommuting parameter A. For the lagrangian in the Feynman
gauge, eq. , the BRST symmetry takes the form

dpAu(z) = Ad,c(x)
dpce(x) =0 (18)
dpc(r) = N0"A,(x)
which gives 0pLr = 0 up to total derivatives. Recall that A, ¢(x) and ¢(z) anticommute (they

are Grassmann valued quantities). A crucial property of this symmetry is that it is nilpotent,
i.e. it satisfies

[05(A1),08(A2)] =0. (19)
Equivalently, defining the Slavnov operator s by factorizing the constant parameter A
dp(A) = As (20)

one finds that s is a nilpotent graded variation, where nilpotency means that is satisfies
s =0 (21)
i.e. operating twice with it gives a vanishing result on any field. Explicitly, we get

sA,(x) = 0,c(x)
sc(z) =0 (22)
sc(x) = 0" A,(x)
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that indeed gives

s*A,(z) = s*c(x) =0 and s%¢(z) = 0"Ouc(z) = 0 (23)
where the ghost equations of motion have been used in the last equation. Technically, it is said
that the BRST symmetry in this case is nilpotent on-shell.

As for any rigid symmetry, there is an associated conserved current Jp, that can be found
as usual by extending A — A(z) in and computing

0pStot = /d4$ (0,0N)Jg Jy =—F"0,c—0"A,0"c (24)
with associated BRST charge
(B = /d?’x (0,A7¢ — FY0;c) . (25)

There is a way of adding auxiliary fields to make the BRST symmetry nilpotent off-shell.
To see how this happens, let us use a path integral representation of the delta functional in @

5(1) = [ DB eI emnee) (26)

then insert it into the path integral , and path-integrate over h by gaussian integration. The
relevant part from is

/th f(A(x))_h(x))e—ifd‘*m /DhDB —i [ d*z (B(2)(f(A(z))~h(z))+3h?(z))

(27)
/DB zfdx f(A(=) )+§Bz(:1:)) '

From these manipulations one finds a new total lagrangian for the fields (4,, ¢, ¢, B). Recalling
that we have taken as gauge-fixing function f(A) = 0" A, this lagrangian takes the form
1 v = © A § 2
['tot = —ZFMVF -0 C@MC — B0 m + §B . (28)

Eliminating B by its algebraic equations of motion (equivalently, path-integrating over B) one
obtains again the original lagrangian in . Now the BRST symmetry takes the form

SpA, = Ndc
(SBC =0
29
opc = AB (29)
opB =0

which is nilpotent off-shell. Recall that the fields A, and B are bosonic (commuting), while
¢ and ¢ are fermionic (anticommuting). The field ¢(x) is called the ghost, and corresponds to
the gauge parameter a(z), which in a sense is turned into a field with opposite Grassmann
character (a(x) — Ac(z)). The field ¢ is often called antighost, and the field B is the auwiliary
field (also called Nakanishi-Lautrup field).



3 Non-abelian gauge fields

Let us apply what discussed so far to non-abelian gauge fields. Consider the Yang-Mills theory
with lagrangian

L— —%FﬁVF““” (30)
where F}, = 0,A} — 0, A} + gf “bCAZAf,, with infinitesimal gauge symmetry
§A%(z) = Dya(z) = 9,0 (x) + gf Al ()a(x) . (31)
One can choose as gauge-fixing functions (one for each gauge symmetry)
fU(A) = 0" A} (32)
and recognize that the Faddeev-Popov determinant as in arises from
—%OEQS ) _ e psi(n - y) (33)

where the covariant derivative in the adjoint is written as Dzb = 0,0%+ gf“CbAZ(x). Thus, using
ghosts fields and considering the weighted Lorenz gauge (R gauge) one finds the gauge-fixed
action ] )

Liot = —ZFSVF“W — oM D, — E
Note that now the ghosts do not decouple, as there is a covariant derivative appearing: there
is a non-trivial interaction vertex sitting inside

»Cgh _ _aMEaDuca _ _auéaauca . gfabcauéaAZCc . (35)

(0" A%)? . (34)

Thus the ghosts enter the Feynman diagrams and they will do their job to guarantee the
correctness of the final result.

The gauge-fixed lagrangian has a nilpotent BRST symmetry. It is simpler to introduce first
the auxiliary fields B* and present the gauge-fixed action in the form

1 a aur =a a a a 5 a
Lig = = Fi P — 9Dy — B0 A5, + S (B")’ (36)

whose BRST symmetry takes the simple form
opAj, =AD"
5Bca —_ _gfabccbccA

opc* = AB®
opB*=0.

(37)

Note that to recognize the BRST variation of the ghosts ¢* one could have imposed the nilpo-
nency of the BRST rule on A7

[5(/\1)7 §(A2)]AZ =0. (38)
Eliminating the auxiliary B® by its equation of motion (B® = %8“%1;) modifies the BRST
transformation rule of the antighost to

1
" = A0 A,

turning the BRST symmetry nilponent only on-shell.

(39)
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3.1 Feynman rules for non-abelian gauge theories

Having found a gauge-fixed action, one can use it to generate the perturbative expansion
with Feynman diagrams. In particular, one can deduce the Feynman rules corresponding to
propagators and vertices (see ch. 72 of Srednicki).

4 BRST quantization

BRST quantization is an algebraic method that allows to find the complete gauge-fixed action
entering the path integral, including the ghosts and gauge-fixing terms. It is recognized by
extending the key features observed in the previous examples, and uses the BRST symmetry
as guiding principle.

We employ the non-abelian gauge theory to present the main steps of the method. It
consists in introducing the BRST symmetry first. For that, one starts from the gauge field

Au(z) = —i A (2)T* with gauge invariant lagrangian
1 5 2 1 5
L= 2—92JCI'(FMVF“ ) = Etr (Z HZ,F'M ) (40)
and corresponding infinitesimal gauge symmetry
0A,(x) = D,o(x) . (41)

Then, the BRST symmetry on the gauge field is obtained by introducing the ghost ¢(x) =
—ic*(x)T* and replacing a(z) — Ac(x) in the infinitesimal gauge transformation, where A is
the rigid anticommuting parameter of the BRST symmetry. Thus, the BRST symmetry on the
gauge field is equivalent to a gauge transformationﬂ

0A,(x) = D,a(x) — dpAu(x) = AD,c(x) . (42)

Then, the classical action is manifestly BRST invariant. Having introduces the ghost ¢ we have
to find its BRST variation, which is obtained by requiring that the BRST transformation of
the gauge field A, be nilpotent

[05(A1),05(A2)]Au(z) =0 — dpe(x) = —c(z)c(z)A . (43)
Note that
c(x)e(r) = A (x)T(2)T° = *(2)’(2)TT" = ca(:ﬂ)cb(az)%[T“, T = c“(a:)cb(a:)%]‘“I’CTC (44)
that implies .
opct(z) = —Efabccb(x)cb(x)/\ (45)

that contains the structure constants of the gauge group and Coincidesﬂ with the one in ([37)).
Nilpotency of the BRST symmetry on the ghost is a consequence of the Jacobi identity satisfied
by the structure constants of the gauge group.

At this stage the BRST symmetry is equivalent to the original gauge symmetry, but the
path integral with the ghosts has a chance of being finite

7 = /DADC S = finite (46)

?Recall that in the adjoint D,a = d,a + [A,,, o, and similarly D,c = d,c+ [4,,c].
3The coupling constant is absorbed into A, and c.



but still useless in this from (comparing this with (109) one identifies [ D¢ = m) .
To make it more useful, one introduces additional fields, the non-minimal fields (¢, B), with

¢ fermionic and B bosonicﬂ They carry trivial BRST transformations

(535(95) = AB(.’L‘)

which are evidently nilpontent. They are used to introduce a gauge fermion ¥ of the formﬁ
U =cf(Ay, B) (48)

where f(A,, B) plays the role of the gauge-fixing function. The BRST variation of the gauge
fermion (with the parameter A removed) is manifestly BRST invariant, as the BRST symmetry
is nilpotent, so that the total lagrangian

[ftot =L+ sV (49)
is BRST invariant by construction
Sﬁtot =sL + SQ‘I/ =0 (50)

(up to total derivatives, as usual).

For suitable choices of the function f(A,, B) one obtains a gauge fixed action that path-
integrated over (A,,c,¢c, B) gives a well-defined path integral which can be used to generate
the perturbative expansion in terms of Feynman diagrams.

In our case a nice choice is

f(A,,B)=0"A, — gB — U =c <8“Au — gB) (51)
which produces
sV =B (8“14” - §B> —co'D,c. (52)
This gives the correctly gauge-fixed total lagrangian
1
Ligp = 7 Fw k" —¢0"Dye+ BO"A, — %BZ (53)

that compares succesfully with after reinstating the overall properly normalized trace g%tr.

Comments:

e One can introduce a ghost number by assigning ghost number 1 to the ghost ¢, and ghost
number —1 to the antighost ¢. Other fields have vanishing ghost number. The ghost number
helps to classify the various quantities: the action has ghost number 0, the s operator changes
ghost number by 1 (i.e. it has ghost number 1), and the gauge fermion ¥ has ghost number
—1.

e The nilpontecy of the BRST symmetry brings in the concept of cohomology, which is
used to identify the physical (i.e. gauge invariant) observables as cohomology classes: physical
observables are BRST invariant quantities, while two BRST invariant quantities differing by
the BRST variation of a quantity belong to the same class, and identify the same physical
observable.

4 Again with the expansion é(z) = —ie®(x)T* and B(x) = —iB*(x)T°.
S5For notational simplicity we neglect an overall g%tr(- -+ ) that may be reinstated at the end.
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e S and Sy = S+ s [ ¥ are equivalent actions and produce the same physical results.

e The BRST quantization is very general, and can be applied to all those cases where
the gauge algebra closes off-shell (no equations of motions are needed to verify the closure
of the gauge algebra) and with constant structure functions. For example, it can be used to
quantize gravity (as described by the Einstein-Hilbert action), which nevertheless remains a
non-renormalizable theory.

e More general theories, as for example supergravity, are often described more simply by
open gauge algebras, and more general methods are needed to get the correct gauge-fixed
action to be used in the path integral. The Batalin-Vilkovisky method, that uses the concepts
of antifields and antibrackets, is such a method.

4.1 Application: gauge-fixing of perturbative quantum gravity

A further application of the BRST method is the gauge-fixing of the Einstein-Hilbert action
for perturbative quantum gravity. In this theory the dynamical field is the metric tensor g, (z)
that defines the invariant length element in spacetime by

ds® = g, (x)dz"dz” . (54)

The metric has a gauge symmetry associated with the arbitrary changes of coordinates (also
known as diffeomorphisms or reparametrizations) according to which under a change of coor-
dinates © — 2/(z) it transforms according to the tensorial transformation law

0x® 9xP
G () — g;w(x’) = gaﬁ(x)@ oz (55)
For an infinitesimal change of coordinates given by
t — o =t — M (x) (56)

where &#(x) is an arbitrary infinitesimal vector field, the metric tensor transforms infinitesimally

 5gu(0) = 6 (@) — g (@) = E(0)D,90 (1) + D (X)g () + D, (@) gpn(2)
= Vuf,,(w) + V,,SM(:U) .

as directly deduced from the finite transformation rule above. There are 4 independent in-
finitesimal gauge functions contained the vector field &#. The gauge invariant action for the
Einstein’s theory of gravity is the Einstein-Hilbert action

(57)

Senlgu] = 51 [ d'aVIR(0) (59

where g = | det g, |, R(g) is the Ricci scalar built from g, and x* = 87G with G the Newton
constant. k is taken as the coupling constant of the theory.
Our conventions follow from the definition of the covariant derivative V,, defined on vectors
fields by
V. Vr=9,V"+T,, V", v.Ww,=9W,-T7 W, (59)

where the Christoffel symbols I',, (the components of the Levi-Civita connection) is

1
Fﬁzx = 59”(&191/0 + 0vGuo — OoGyuw) - (60)



Covariant derivatives do not commute, and are used to define the curvature tensors by
V..V, V=R,V , R,=R,,, R=R", (61)

known as Riemann tensor, Ricci tensor, and Ricci scalar, respectively.
Perturbatively, for small fluctuations around Minkowski space, one splits the metric as

G (%) = Ny + Khy () (62)

where h,, (z) is the field whose quanta are the “gravitons”. The action expanded in terms of
hu (), contains a quadratic part ( it identifies the graviton propagator after gauge-fixing) plus
an infinite number of vertices (the action is fully nonlinear in h,, (x))

Sen [guV] = 5y [hw] + Z Sn[hW] . (63)

The vertices have a quite complicated structure, but the quadratic part is easily derivable, and
it contains a kinetic operator that is not invertible because of the gauge symmetry .

To start with the BRST quantization of , we first introduce the ghost ¢* by letting the
gauge parameters £#(x) — Ac*(x), and define the BRST rule on the metric g, by

0pgw = AN(V,ueo + Ve, . (64)
Requiring nilpotency fixes the BRST transformation rule of the ghosts
dogct = Ac”0,ct . (65)

This calculation may seem algebraically lenghty, but geometrical considerations may simplify
it. To that purpose, let us notice that the gauge symmetry is generated by the Lie derivatives
along " (denoted by £¢), which translates into the fact that may be rewritten as

0Gu = £¢ G (66)

(said differently, this defines the Lie derivative of the metric). More generally, any tensor
transforms under the infinitesimal change of coordinates by its Lie derivative along &*. In
particular, a scalar field ¢ transforms as

0 = £e ¢ = E"0u0 (67)
which would give a BRST transformation
Spd = A0, 6 . (68)

It is now much simpler to study the imposition of nilpotency on the scalar ¢ to fix the BRST
rule of the ghosts. This amounts to extract the structure constants of the diffeomorphisms.
Writing dgct = Asc in terms of the Slavnov variation s we impose

0= [53(/\1), 5B<A2)]Q5 = 2A2A1(sc"6ugz5 — c”@l,c"ﬁugb) (69)

that fixes
sct = "0, — dpct = Ac"0,ct . (70)

This rule captures the structure constants carried by the commutator of the Lie derivatives

[£e, £9] = Lien (71)
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which is the gauge algebra of the group of diffeomorphisms. Thus, we have found the BRST
transformation that contain the information on the structure of the gauge group

089w = MV ,c, +Vocp)

72
opct = Ac”0,c" . (72)

Now, to implemement suitable gauge-fixing conditions we add non-minimal fields ¢,, B,

with BRST transformation
dpc, = AB,

73
5B, =0 (73)

A convenient gauge choice uses the functions

" =0,(Vgg™) (74)

which fix the harmonic gauge (de Donder gauge) when set to zero. We use it in the gauge
fermion

¥ = 5,(0,(ygg"™) + ag”'B,) (75)

which has the property of identifying a particularly simple graviton propagator for o = %
At this stage we have constructed the gauge-fixed action for pure gravity, given by

Stot = SEH[Q} + S/ d4l’\p (76)

which is manifestly BRST invariant. It is the starting point for the perturbative treatment of
quantum gravity.

4.2 Graviton propagator in flat space

The gauge-fixed gravitational action ([76]) is algebraically quite complex, and perturbative cal-
culation in quantum gravity are notoriously difficult.

Let us work out the details keeping only the quadratic approximation in h,,, that leads
to the perturbative propagator of the graviton (and ghosts). Expanding the Einstein-Hilbert
action to quadratic order in A, one finds [

1 1 1 2
_ 4, — pr 92 - 2 v _ =
Solh] = /d x4{h Ol — 5 hO h+2(a hop 28Mh> } (77)

with h = n*”h,,. Raising/lowering of indices is done with the flat metric 7,,. This quadratic
action has a gauge symmetry under the linearized version of , that reads

(Sh,uz/(x) = au&z + 81/6# (78)
after an obvious redefinition of &#. The gauge fixing function linearizes to the condition
1
= —(@h”" - 58%) (79)
which inserted in the gauge fermion

U =2,(f" + aB") (80)

6Details of the calculation may be found in appendix
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gives a BRST variation
1
sU = B,(f*+ aB") + ¢,0%c" ~ —4—f2 + ¢,0%ct (81)
!

where in the last expression the B, equations of motion have been used. Setting o = % gives
the simpler form of the total gauge-fixed action

1 1
Sy or = S2lh] + s / U= / d'z {Zhﬂ”a%w -3 ho®h + 5“82(:“} : (82)

It is now a simple matter to get the propagators. The lagrangian for h,, can be written as

1 .
Ly = éhWP‘“”O‘Bazhag (83)
in terms of the tensor ] ]
Pl = 2 (" 4 ") = 0™ (84)
which in arbitrary dimensions D has an inverse given by
2 pDuv,af3 1 (VS v SH
P/LLV,OLB = Nuavp —+ NupMva — mnwﬂ]oﬁ y P Paﬂ,po = 5(6p60 + 6p60) . (85)
Thus, in D = 4 one finds
d*p . P
o (2)he _ P ip(z—y) L pnaB
(sfe)has(n) = [ g evte st
. (86)
c - AP ipa—y) v
<cu<x)cl/(y>> = i(2m)? € p? — ie
with
Puu,aﬁ = NuaTlvp + NusMva — NuwMaps - (87)

The construction is also valid in arbitrary dimensions, with P, .g taking the form .

5 Cohomology

The power of the BRST symmetry is due to its nilpotency, that allows to define the concept of
cohomology. The cohomology emerges as a vector space made up of elements that are equiv-
alence classes. Different cohomology classes are identified with different physical observables,
i.e. gauge invariant observables. For that purpose let us make an aside and review the concept
of cohomology.

Let us consider a vector space V and a linear operator 6 : V. — V such that 62> = 0. Such
an operator is called nilpotent. One defines the kernel of §, defined by Ker(d), as all elements
a € V such that da =0

Ker(6) ={a €V | da =0} . (88)

Its elements are vectors that are said to be “closed’, and often called “cocycles”. Then, one
defines the image of §, denoted by Im(d), as all elements § € V such that there exists an
element v € V for which 5 = dvy

Im(§) ={f €V | 3y € V for which § = v} . (89)
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Its elements are are vectors that are said to be “exact’, and often called “coboundaries”. Clearly,
all exact elements are closed, Im(d) C Ker(d), because of nilpotency. However not all closed
elements may be exact. The cohomology measures the amount of non-exactness. It is defined
as the set of equivalence classes [a] containing closed elements that differ by exact elements

a~do if d=a+dy. (90)
The space of equivalent classes is denoted by

HO =1

(91)

and is called the group of cohomology, or simply cohomology, see Figure [3|

v 4, v 1% AN v

Figure 3: The cohomology measures the amount of non-exactness of closed elements. It is
nontrivial when Im(J) C Ker(d). The right hand side depicts the case of vanishing cohomology,
Im(9) = Ker(¢), where all closed elements are exact.

Returning to the BRST construction discussed previously, we have that the Slavnov operator
s is a nilpotent operator. It acts on functional of the fields, including ghosts and non-minimal
fields. Physical observables must be BRST invariant quantities, i.e. annihilated by the operator
s that defines the infinitesimal BRST transformations (the BRST symmetry takes the role of
gauge invariance in the gauge fixed theory). Physical observables that differ by the BRST
variation of some other quantity must be identified as equivalent: thus physical observables are
defined by the cohomology classes of s. For example, the action is a nontrivial cohomological
element at vanishing ghost number.

Similarly, in canonical quantization, the BRST charge () becomes an operator Q It has the
properties of being hermitian, with ghost number one, and nilpotent Q% = 0. As all charges,
like the hamiltonian, it as a dual role: i) as conserved quantity arising from a Lie symmetry of
the system, i) as generator of that Lie symmetry on the system under study. Physical states
are defined by the cohomology of Q on the full BRST Hilbert space at vanishing ghost number.
That is, physical states are given by vectors of the Hilbert space at vanishing ghost number that
are BRST invariant, and thus satisfy Q|wph> = 0. In addition, physical states are equivalent if
they differ by the BRST variation of another state: [¢,,) and |3, ) are equivalent if they are

related by [¢7,,) = [tpn) + Qlx) for some |x). Similarly, BRST invariant operators are those
commuting with the BRST charge Q, in a graded sense, [Q,Aph} = 0, with an equivalence
relation given by flph ~ fl;h = Ay + [Q, B} for some operator B.

One may check that matrix elements of physical operators between physical states do not
depend on the representative chosen in the respective classes of equivalence, namely

(Wonl Apn|dpn) = (W0 |ALL |0 - (92)
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For example, if [¢},) = |#,) + Q[x), then

(ol Aph | Dn) = (Won Apnl dpn) + (pn] ApnQIX) (93)

but the last term vanishes as (¢,,| and A, are physical,

(Ul ApnQ1X) = (Cpnl [Apn, Q1Y) + (pn] QAp|x) = 0 (94)

where we have taken /Alph to be bosonic for simplicity. Thus

<¢ph|Aph|¢;ah> = <¢ph|Aph|¢ph> . (95)

Note that the full BRST Hilbert space cannot have a positive norm. For example, exact
states like |x) have vanishing norm, as

Q)P = (xIQQIx) =0 (96)

where we have used the hermiticity of @ as well as its nilpotence. However, it is only important
that the norm in the physical sector of the Hilbert space be positive definite.

For further details, please refer to chapter 74 of Srednickz.

6 Batalin-Vilkovisky and the antibracket

The method of Batalin-Vilkowsky generalizes the BRST scheme by adding to the action external
sources that couple to the BRST variation of the fields. This set-up was originally considered by
Zinn-Justin to derive useful Ward identities and study the renormalizability of gauge theories.

To introduce this method, let us consider the case of the SU(N) Yang-Mills gauge-fixed
theory. For each field ¢*(x) one introduces a source ¢%(z) of opposite Grassmann character,
and adds to the lagrangian the term ¢%s¢?, where s¢” is the Slavnov variation of the field
¢?, and thus records its BRST transformation rules. The sources ¢% are called antifields, and
are not to be path integrated over. For the YM theory with gauge fixed action in this
construction reads

ES 1 a aur —=a al a a a
St ¢4] = /d4x (—ZFWF W— QM Db — BUOM AL + g(B )?

(97)

+ AMD, " — czgf“bccbcc + EZB“)

and the BRST invariance is written as

5RS 535 (SLS
drr—"——6p¢(z) ~ /d4x =0. 98
| o5’ @ 564 (2) 563 () (58)

This can be written more compactly defining the antibracket, that for any two functionals of
¢?(z) and ¢*(z) is defined by

o (OrF 0G 0pF 0.6
w6 = [ (i n@ ) "
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Then, takes the form
(5,5)=0. (100)

A similar equation holds for the effective action
(I,\I)=0 (101)

which constitute a set of Ward identities that may be used to study the renomalizability of
gauge theories through cohomological methods. We will not describe this topic in these lectures.
Batalin-Vilkovisky generalized this construction to present a method for gauge-fixing any
gauge theory. They started with the original action with gauge symmetries and introduced
the ghosts associated to the gauge symmetry. Then, they required the action to be a proper

solution of the master equation
(5,5)=0 (102)

where “proper” means that all gauge symmetries are taken care of in terms of BRST variations
coupled to the antifields. The action with the antifields that solves the master equation has a
double role: i) it gives the action and i) it acts as generator of BRST transformations through
the antibrackets. The BRST rules on the fields are

Ipp™ = A, S) . (103)

Then, the master equation amounts to require the BRST invariance of the action S, with §
acting also as generator of the BRST transformation.

For gauge algebras that close off-shell and with constant structure functions, it amounts to
find the BRST rule of the ghost. For YM the action satisfying this master equation reads

* * 1 a auv *a, *g aoc C
S[A, ¢, A*, "] :/d%(—ZFWF WA “Duca—c(ﬁf b cbc> : (104)

Technically, the solution must be “proper”, meaning that all the gauge symmetries must be
included together with their own ghosts. In general, the proper solution contains all information
about the gauge symmetries, their Jacobi identities, the generalization of the Jacobi identities
appearing when the structure constants become functions and/or the case of gauge symmetries
that close only on-shell.

At this stage this solution is not enough to perform a gauge-fixing, so one adds to the
model non-minimal fields with trivial BRST transformation rules, and of course their respective
antifields. For our case these new fields are (¢*, B®) and (¢, B). The extended action

* 1 a apuv *Q *g aoc (& =% a
S[e?, ¢4] = /d4x <_4_1F””F WA “Duca—caéf becbet + & B ) (105)

still solves the master equation. The non-minimal fields do not modify the cohomology, and
the physical observables remain the same.

Now the gauge-fixing is achieved by selecting a gauge-fermion functional ¥, and computing
the total gauge fixed action by setting the antifields equal to the variation of the gauge fermion
under the corresponding fields, i.e.

ow

St = S| 9?1 = 5o (106)
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Indeed, using as gauge fermion

U = / d*zc” (a“A;; - gB“) (107)

one reobtains )

The fact that the action with antifields satisfies the master equation ((102)) guarantees that
physical observables do not depend on the choice of ¥, even though many choices are of no
practical use, as for example ¥ = 0. Formally, the path integral

Z - / D ¢iS6,55=0w/ 504 (108)
can be shown to be independent of the gauge fermion W.

/ng iS[p4, Pu= 6(;\1,’4 ' (109)

A derivation of the master equation

Let us consider the path integral in and check under which condition it is really indepen-
dent on the gauge fermion ¥ = ¥(¢), a function of the fields only. Of course, for ¥ = 0 the
path integral is ill defined, but for suitable choices of W this singular point might be resolved,
making the path integral well-defined.

So we calculate its variation under a change 0¥ of ¥, and in hypercondensed notation we

get [1]

aaxp st

aR(N’ I iS[, ¢
/ D¢ 04 (992526 )¢*=B\P/8¢>

3L iS[, 84
/D¢ Naqu 6¢A > —50 /5

On Oy isig.o . On D0 isigon On 0u0¥
/ Do 5% a¢A am T oopaes’  agn 757 )

D SW R_L S[, p*|
/ O 55 g, ¢

which vanish if

" =0V /0¢

(110)

$* =61 /64

Or_OL_isioed (111)
967 067,
In the derivation we have formally integrated by parts in the path integral, and noted that the
second term in the last but one line vanishes in the sum over indices.
The vanishing of | amounts to requiring the “quantum master equation”

(S,S) = 2iAS (112)
where 9. 9
_ Or O

AS = _8¢A _8¢f45 (113)

"Note that left and right derivatives of on an anticommuting quantity ¥ coincide.
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This last term can often be set to vanish (if there are no anomalies in the BRST symmetry)
and the condition reduces to the “classical master equation”

(S,5) =0 (114)

that we have already discussed.

The solution with an open gauge algebra

Consider an action S[¢] where all dynamical fields are collectively denoted by ¢°. We employ
an hypercondensed notation where the index ¢ stands for all possible indices which the fields
may depend on, including the spacetime position. The equations of motion can be written as

S, === =0 (115)

and we assume that there are gauge symmetries that we write as
09" = Ry&° (116)

where £% are infinitesimal arbitrary parameters and the quantity R’ is in general field depen-
dent. The fact that is a symmetry means that

58 = SR =0 (117)

and it is a gauge symmetry if the index « includes the time coordinate (or spacetime coordinates
for relativistic theories) and the parameters £ depending arbitrarily on it.

Let us now comment study the algebraic structure of the symmetries. The product of two
transformations of the type will still leave the action invariant, and it is natural to consider
the commutator algebra (the Lie algebra) We shall assume, without loss of generality, that the
set of symmetries is complete, i.e. all independent symmetries are taken into account by the
general formula in . We will also assume that these symmetries are linearly independent
(if this is not the case the algebra is called reducible). The commutator algebra will then be of
the general form

[6(61),6(&2)]0" = (R ;R — (- RE RIeDes = R f1 €068 + S, ElLeles . (118)

The last step follows since, by assumption, the original set of symmetries is complete and the
most general thing that can happen is that the algebra closes modulo on-shell trivial symmetries
(these on-shell trivial symmetries, which take the general form d¢' = S ;E" with E7* graded
antisymmetric but otherwise arbitrary, are present in any field theory; they vanish on shell
and do not imply the absence of degrees of freedom from the theory). The structure functions

;/,6’ and the coefficients E;]ﬁ, graded antisymmetric in «, 8 and 7, j, characterize the classical

symmetry algebra. If the coefficients E;]B are non-zero, one speaks of an open algebra. By using
ghosts fields ¢*, fields of opposite statistics than the symmetry parameters £¢, the relation (118
can be cast in the following way

(—)f“(2R;7jRg — R fls— SJEfﬁ)cﬂca =0 (119)

Additional relations and higher order structure functions are obtained by considering Jacobi
identities. They will be taken care of by the the antibracket formalism of Batalin-Vilkovisky.
For the fields ¢ = (¢, c®) one introduces the antifields ¢*% = (¢, ) and one ask to satisfy
the classical master equation

(5,8) =0 (120)
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with boundary condition

oLS -
= R, c” 121

¢5=0

Slg=0 = Sald'] ,

where we denoted by S, the original action.

To see how the gauge algebra is cast into S[¢?, ¢%], let’s consider the simple case in which
higher order structure functions do not arise in the Jacobi identities. One expand S into powers
of antifields

S=S5+5+5+.. (122)

and the master equation (120]) splits into several pieces

(So,50) =0 (123)

(S0, 51) =0 (124)

(S1,51) +2(5,82) =0 (125)
(So, 53) —|— (Sl, Sg) - O (126)
............ (127)

Employing the boundary conditions , one sees that eq. is trivially satisfied since S
does not depend on antifields, eq. is the statement about the invariance of S, eq.
describe the algebraic closure given in , and eq. is automatically satisfied because we
restricted ourselves to the situation in which the higher order structure functions vanish. In
this case, the general solution of the master equation reads

* DI 1 * o « 1 * Ik A4 Pt i a
S =Sa+ ¢; R + Ecq<_)§ flgcﬁc - Z@%(_)& 0 Eiﬁcﬁc : (128)
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A Quadratic approximation of Einstein-Hilbert action

Some of the details are as follows: the metric is expanded as
g,uu(x) = N + h;w(x) (129)
where for the moment we absorb the coupling constant « in h,,. Then, at linear order
1
g (x) =" —hW"(z), g=|detgu|=1+h, Jg=1+ §h (130)

where indices are raised and lowered with the flat metric 7,,. Then the Christoffel symbols
linearize as

1

FZV = 577p"(8uhw + O hye — &,hw) (131)

and the Riemann tensor as

1 1
R, s =0,I%, — OVFZU + .= 580(8uhy” — &,h,/’) - 58”(8th — Oyhye) - (132)
and the Ricci tensor
1

R, =R,"s = 5((9”8’%0“ + 0,0"hy,, — 0,0,h — 62hw) ) (133)

Now to get the quadratic approximation one needs to keep at least a linear order in the
variation of the \/gg"” part of the Einstein-Hilbert action, as at the quadratic level the Ricci
tensor will not contribute. This is seen recalling that in a first order formalism, the action
depends on the metric and Christoffel symbols independently

1
Sewlg,T] = 5.3 / d*z\/gg" R, (T) (134)

The equation of motions of g, give

1
Riuy(T) = 599" Rap(I) = 0 (135)
while the equations of motion from varying I'},, give algebraic equations whose solutions are
precisely the ones defining the usual Christoffel symbols, that can be substituted back in the

action and in (136)). The latter giving the Einstein equation in its second order form

1
Ryu(9) = 59w R(g) =0 (136)
which could as well be obtained from the action in the second order form, varying only the

V99" part, the remaining g, dependence does not need to be varied as their variation will

be automatically satisfied (schematically 5};;” = 5?;”2—1;, but 6?;” vanish so does 5?‘;”). Thus,
at the linear order the variation of the Einstein-Hilbert action in the second order formulation

may be written as

2k2

3Seuld) = 55 [ d'ov308 (Rulo) = 50uR(0)) - (137

For a second variation, needed to identify the quadratic approximation, one sees that only a
linear variation of R and R, is needed.
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Therefore, at the quadratic order we consider only the terms that will contribute, i.e.

1 1
Sp = — [ dPx (1 + §h> (0" — 1)

T oR2

1
E(ayaﬂh(,,, + 050"y — 0,050 — 9?hyyy) (138)

leading to (after some integration by parts to collect similar terms)

1
So= 15 | P (WP hy — hO*h -+ 200" 0" Iy + 20" hyu)?). (139)

and finally redefining h,, — kh,,, with some further integration by parts and grouping terms

one obtains .

2
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