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Quantum mechanics can be formulated in two equivalent ways: (i) canonical quantization,
also known as operatorial quantization, based on linear operators acting on the Hilbert space of
physical states, (ii) path integrals, based on integration over a space of functions. The former
was the first one to be developed, through the work of Heisenberg, Schrödinger, Dirac and
others. The latter was introduced later on by Feynman, who extended previous suggestions
by Dirac. Nowadays it is useful to know both formulations, as depending on the problem at
hands, one may find technical advantages in using one with respect to the other. In worldline
approaches one often uses the operatorial formulation to define the problem, and path integrals
to calculate the answer.

The operatorial formulation of quantum mechanics is the one usually presented in introduc-
tory courses on quantum mechanics. Path integrals are introduced later on, when approaching
the problem of quantizing gauge fields. Indeed with the advent of gauge theories, path integrals
have become quite popular because the quantization of gauge fields is much more intuitive and
transparent in such a context. In part I of this book we introduce path integrals for the quanti-
zation of point particles, as opposed to the quantization of field theories. The former contains
a finite number of degrees of freedom, the latter deals with an infinite number of degrees of
freedom, though formally they can be treated on the same footing. We assume only elementary
notions of quantum mechanics in its operatorial form, and start developing path integrals from
the beginning.

We begin this chapter by introducing path integrals for a non relativistic point particle.
This case contains already the essence of path integrals. Then in the following chapter we
provide a derivation of path integrals for fermionic systems, i.e. those which at the canonical
level are quantized using anticommutators. Fermionic path integrals make use of Grassmann
variables, anticommuting variables that allow the description of spin at the “classical level”.
Path integrals with bosonic and fermionic variables can be used to discuss supersymmetric
systems, that often arise in the description of point particles with spin. In subsequent chapters
we consider path integrals in the presence of background fields. For the case of bosonic path
integrals, a scalar background potential V (x) is treated without any particular effort already
in this chapter, but in chapters 4 and 5 we discuss the regularization issues needed for coupling
the particle first to a vector potential Ai(x) and then to a tensor potential gij(x), typically the
metric of the space on which the particle propagates. Similar issues are discussed for fermionic
path integrals as well.

1 Canonical quantization

Canonical quantization is constructed starting from the hamiltonian formulation of a classical
system, and lifting its phase space coordinates, the generalized coordinates xi and their conju-
gate momenta pi, to linear operators x̂i and p̂i. The latter act on a linear space endowed with a
positive definite norm, the Hilbert space of physical states H. The basic operators must satisfy
commutation relations required to be equal i~ times the value of the corresponding classical
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Poisson brackets

[x̂i, p̂j] = i~δij , [x̂i, x̂j] = 0 , [p̂i, p̂j] = 0 . (1)

As a consequence, all classical observables A(x, p), which are functions on phase space, become
linear operators Â(x̂, p̂) acting on the Hilbert space H. The most important example is given by
the hamiltonian function H(x, p), which upon quantization turns into the hamiltonian operator
Ĥ(x̂, p̂). The latter generates the time evolution of any state |ψ〉 ∈ H through the Schrödinger
equation

i~
∂

∂t
|ψ〉 = Ĥ|ψ〉 . (2)

The corresponding solution is a time dependent state |ψ(t)〉 that describes the evolution of the
system. This set up is known as the Schrödinger picture of quantum mechanics. It is a formal
quantization procedure that becomes operative once one finds an irreducible unitary repre-
sentation of the algebra (1). It is a mathematical result, known as the Stone–von Neumann
theorem, that in quantum mechanics all irreducible representations are unitarily equivalent, so
that there is a unique procedure of quantizing a classical system up to equivalences1. Histori-
cally, this theorem made it clear that the Schrödinger formulation of quantum mechanics had
to be equivalent to the one proposed by Heisenberg with its matrix mechanics (now known as
the Heisenberg picture).

Using the coordinate representation, obtained by considering the eigenstates |x〉 of the
position operator x̂, that satisfy x̂|x〉 = x|x〉 with x a real number, and projecting the various
states of the Hilbert space onto them to identify the standard wave functions, one finds the
familiar way of realizing quantum mechanics as wave mechanics

|ψ〉 → ψ(x)
(
ψ(x) = 〈x|ψ〉

)
x̂ → x

(
〈x|x̂|x′〉 = x〈x|x′〉 = xδ(x− x′)

)
p̂ → −i~ ∂

∂x

(
〈x|p̂|x′〉 = −i~ ∂

∂x
〈x|x′〉 = −i~ ∂

∂x
δ(x− x′)

)
Ĥ → − ~2

2m

∂2

∂x2
+ V (q) (3)

together with the standard form of the Schrödinger equation

i~
∂ψ(x, t)

∂t
= − ~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) . (4)

We have reviewed the quantization procedure with a motion in one dimension, but extension
to higher dimensions is straightforward.

Given an initial state |ψi〉 that describes the system at an initial time ti, the solution of the
Schrödinger equation in (2) for time independent hamiltonians is formally given by

|ψ(t)〉 = e−
i
~ Ĥ(t−ti)|ψi〉 (5)

which indeed satisfies the equation and the boundary condition |ψ(ti)〉 = |ψi〉. The amplitude
to find the system at time tf in state |ψf〉 is obtained by projecting the solution evaluated at

1And up to the problem of resolving the ordering ambiguities present when trying to relate a classical
observable like the hamiltonian H(x, p) to its quantum counterpart Ĥ(x̂, p̂).
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time tf onto the state |ψf〉

〈ψf |ψ(tf )〉 = 〈ψf |e−
i
~ Ĥ(tf−ti)|ψi〉 . (6)

This amplitude is called “transition amplitude”. In the following sections we shall find a path
integral representation of such an amplitude.

2 Path integrals in phase space

We now proceed to derive a path integral that computes the transition amplitude starting from
canonical quantization. For this purpose it is useful to insert twice the identity operator 1,
expressed using the eigenstates of the position operator

1 =

∫
dx |x〉〈x| with 〈x|x′〉 = δ(x− x′) , (7)

and rewrite (6) as

〈ψf |e−
i
~ Ĥ(tf−ti)|ψi〉 = 〈ψf | 1 e−

i
~ Ĥ(tf−ti) 1 |ψi〉

=

∫
dxf

∫
dxi ψ

∗
f (xf ) 〈xf |e−

i
~ Ĥ(tf−ti)|xi〉ψi(xi) (8)

where ψi(xi) and ψf (xf ) are the wave functions for the initial and final states and ψ∗f (x) =
〈ψf |x〉 = 〈x|ψf〉∗. This shows that it is enough to consider the matrix element of the evolution
operator between position eigenstates

A = 〈xf |e−
i
~ ĤT |xi〉 (9)

where T = (tf − ti) is the total propagation time.
For simplicity, we keep considering a one-dimensional motion for a non relativistic particle

of mass m with quantum hamiltonian

Ĥ(x̂, p̂) =
1

2m
p̂2 + V̂ (x̂) . (10)

The derivation of the path integral now proceeds in the following fashion. One splits the
transition amplitude as the product of N factors, and inserts the completeness relation (7) in
between the factors N − 1 times

A = 〈xf |e−
i
~ ĤT |xi〉 = 〈xf |

(
e−

iT
~N Ĥ

)N
|xi〉 = 〈xf | e−

iε
~ Ĥe−

iε
~ Ĥ · · · e−

iε
~ Ĥ︸ ︷︷ ︸

N times

|xi〉

= 〈xf |e−
iε
~ Ĥ 1 e−

iε
~ Ĥ 1 · · · 1 e−

iε
~ Ĥ |xi〉 =

∫ (N−1∏
k=1

dxk

) N∏
k=1

〈xk|e−
iε
~ Ĥ |xk−1〉

(11)

where for convenience we have denoted x0 ≡ xi, xN ≡ xf , ε ≡ T
N

. We can now use N more
times the resolution of the identity, but expressed in terms of the momentum egenstates

1 =

∫
dp

2π~
|p〉〈p| with 〈p|p′〉 = 2π~ δ(p− p′) , (12)
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to obtain

A =

∫ (N−1∏
k=1

dxk

) N∏
k=1

〈xk|e−
iε
~ Ĥ |xk−1〉 =

∫ (N−1∏
k=1

dxk

) N∏
k=1

〈xk| 1 e−
iε
~ Ĥ |xk−1〉

=

∫ (N−1∏
k=1

dxk

)( N∏
k=1

dpk
2π~

) N∏
k=1

〈xk|pk〉〈pk|e−
iε
~ Ĥ |xk−1〉 . (13)

This is an exact formula. There is one more integration over momenta than integrations over
coordinates, as consequence of choosing coordinate eigenstates as initial and final states in the
transition amplitude. Now one can manipulate this formula further by making approximations
that are valid in the limit N →∞ (ε→ 0). The crucial point is the evaluation of the following
matrix element

〈p|e−
iε
~ Ĥ(x̂,p̂)|x〉 = 〈p|

(
1 − iε

~
Ĥ(x̂, p̂) + · · ·

)
|x〉

= 〈p|x〉 − iε

~
〈p|Ĥ(x̂, p̂)|x〉+ · · ·

= 〈p|x〉
(

1− iε

~
H(x, p) + · · ·

)
= 〈p|x〉 e−

iε
~ H(x,p)+··· . (14)

These approximations are all valid in the limit of small ε. In addition, the substitution
〈p|Ĥ(x̂, p̂)|x〉 = 〈p|x〉H(x, p) follows from the simple structure of the hamiltonian (10), that
allows one to act with the momentum operator on the left and with the position operator on
the right, and have them replaced with the corresponding eigenvalues. Notice that there is no
need of commuting operators inside the hamiltonian, and the final result is that all operators
are simply replaced by eigenvalues. This way the quantum hamiltonian Ĥ(x̂, p̂) gets replaced

by the classical function H(x, p) = p2

2m
+ V (x). All these manipulations are justified for a wide

class of physically interesting potentials V (x). In this context there exists a rigorous proof that
this is correct, which goes under the name of “Trotter formula”. We shall not need to review
it as the physically intuitive derivation given above is enough for our purposes.

Using now eq. (14) and remembering that the wave functions of the momentum eigenstates
(the plane waves) are normalized as

〈x|p〉 = e
i
~px , 〈p|x〉 = 〈x|p〉∗ = e−

i
~px (15)

one obtains

〈xk|pk〉〈pk|e−
iε
~ Ĥ |xk−1〉 = e

i
~pk(xk−xk−1)− iε~ H(xk−1,pk) (16)

up to terms that vanish for ε → 0. This expression can now be inserted in (13). At this
stage the transition amplitude does not contain any more operators, bra and ket states, but
just integrations of ordinary functions, though a big number of them (a number that tends to
infinity)

A = lim
N→∞

∫ (N−1∏
k=1

dxk

)( N∏
k=1

dpk
2π~

)
e
iε
~
∑N
k=1

[
pk

(xk−xk−1)

ε
−H(xk−1,pk)

]

=

∫
DxDp e

i
~S[x,p] . (17)
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This is the path integral in phase space. One recognizes in the exponent a discretization of the
classical phase space action

S[x, p] =

∫ tf

ti

dt
(
pẋ−H(x, p)

)
→

N∑
k=1

ε
(
pk

(xk − xk−1)

ε
−H(xk−1, pk)

)
(18)

where tf − ti = T = Nε is the total propagation time. The last way of writing the amplitude
in (17) is symbolic and suggestive: it indicates the formal sum over all paths in phase space
weighted by the exponential of i

~ times the classical action.

3 Path integrals in configuration space

The path integral in configurations space is now easily derived by integrating over the momenta.
Indeed the dependence on momenta in the exponent of (17) is at most quadratic and can be
eliminated by gaussian integration ∫ ∞

−∞
dp e−

K
2
p2 =

√
2π

K
(19)

extended analytically to include complex values of K. Considering the form of the hamiltonian
H(x, p) = p2

2m
+ V (x) and completing the squares (i.e. first rewriting pk

(xk−xk−1)

ε
− 1

2m
p2
k =

− 1
2m

(pk − m (xk−xk−1)

ε
)2 + m

2

(xk−xk−1)2

ε2
, and then changing integration variables pk → p̃k =

pk−m (xk−xk−1)

ε
, which leaves the integration measure invariant) one may perform the gaussian

integrations over the momenta and obtain

A = lim
N→∞

∫ (N−1∏
k=1

dxk

)( m

2πi~ε

)N
2
e
iε
~
∑N
k=1

[
m
2

(xk−xk−1)
2

ε2
−V (xk−1)

]

=

∫
Dxe

i
~S[x] . (20)

This is the path integral in configurations space. It contains in the exponent the classical
configurations space action suitably discretized

S[x] =

∫ tf

ti

dt
(m

2
ẋ2 − V (x)

)
→

N∑
k=1

ε
[m

2

(xk − xk−1

ε

)2

− V (xk−1)
]
. (21)

Again, the last way of writing the expression in (20) is symbolic, and indicates the formal sum
over paths in configurations space weighted by the exponential of i

~ times the classical action.
The space of paths is given by the space of functions x(t) with boundary values x(ti) = xi
and x(tf ) = xf . How to perform concretely the path integral over this functional space is
defined precisely by the discretization, that approximates the function x(t) by the N + 1 values
x0 ≡ xi, x1, x2, . . . , nN−1, xN ≡ xf .

3.1 Free particle

For a free particle (V (x) = 0) one may use repeatedly gaussian integrations and calculate from
eq. (20) the exact transition amplitude

A(xi, xf ;T ) =

√
m

2πi~T
e
i
~
m(xf−xi)

2

2T (22)
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that indeed satisfies the free Schrödinger equation

i~
∂

∂T
A(xi, xf ;T ) = − ~2

2m

∂2

∂x2
f

A(xi, xf ;T ) (23)

with initial conditions
A(xi, xf ; 0) = δ(xf − xi) . (24)

The result is very suggestive: up to a prefactor it is given by the exponential of i
~ times the

classical action evaluated on the classical path, i.e. the path that satisfies the classical equations
of motion. This is typical for the cases in which the semiclassical approximation is exact. One
may interpret the prefactor as due to one-loop corrections to the classical (tree-level) result.
The free particle case is also quite special: the correct result is obtained for any N , so that
there is no need to take the limit N →∞. The case N = 1, which carries no integration at all
in the x variable, is exact as well.

A useful but formal way of calculating gaussian path integrals is that of operating directly
in the continuum limit. One does not need to consider the precise definition of the path integral
measure, but uses only formal properties like its translational invariance. The calculation is
formal in that one assumes properties of the path integral measure, that eventually have to be
proved by an explicit regularization and construction. The calculation goes as follows. The
classical action is S[x] =

∫ T
0
dt m

2
ẋ2, and the classical equations of motions are solved with the

above boundary conditions by

xcl(t) = xi + (xf − xi)
t

T
. (25)

Now one can represent a generic path x(t) as a classical path xcl(t) plus quantum fluctuations
q(t)

x(t) = xcl(t) + q(t) (26)

where the quantum fluctuations q(t) must vanish at t = 0 and t = T to preserve the boundary
conditions. Then one computes the path integral as follows

A(xi, xf ;T ) =

∫
Dxe

i
~S[x] =

∫
D(xcl + q) e

i
~S[xcl+q]

=

∫
Dq e

i
~ (S[xcl]+S[q]) = e

i
~S[xcl]

∫
Dq e

i
~S[q]

= Ne
i
~S[xcl] = Ne

i
~
m(xf−xi)

2

2T (27)

where the translational invariance of the path integral measure (Dx = D(xcl + q) = Dq) has
been used. There is no linear term in q in the action because xcl solves the classical equations
of motion, so that for quadratic actions one has S[xcl + q] = S[xcl] + S[q]. The normalization

coefficient N =
∫
Dq e

i
~S[q] is undetemined by this method, but can be fixed by requiring that

the final result indeed satisfies the Schrödinger equation (thus finding N =
√

m
2πi~T ).

3.2 Euclidean time and statistical mechanics

Continuing analytically the time parameter to purely imaginary values by T → −iβ with real
β, and setting ~ = 1, the Schrödinger equation (23) turns into the heat equation

∂

∂β
A =

1

2m

∂2

∂x2
f

A . (28)
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Its fundamental solution, i.e. the solution with boundary condition A
β→0−→ δ(xf − xi), given by

A =

√
m

2πβ
e−

m(xf−xi)
2

2β , (29)

can be obtained from (22) by the same trick. This analytical continuation is called “Wick
rotation”. It can be performed directly on the path integral: analytically continuing the time
variable as t → −iτ , the action with “minkowskian” time (i.e. with a real time t) turns into
an “euclidean” action SE defined by

iS[x] = i

∫ T

0

dt
m

2
ẋ2 → −SE[x] = −

∫ β

0

dτ
m

2
ẋ2 (30)

where in the euclidean action one defines ẋ = dx
dτ

, with τ usually called “euclidean time”. The
euclidean action is positive definite and the corresponding path integral∫

Dxe−SE [x] (31)

for a free theory is truly gaussian, with an exponential damping rather than with increasingly
rapid phase oscillations. It coincides with the functional integral introduced by Wiener in the
1920’s to study brownian motion and the heat equation.

Such euclidean path integrals are quite useful in statistical mechanics, where β is related
to the inverse temperature Θ by β = 1

kΘ
(k is the Boltzmann’s constant). Indeed the trace of

the evolution operator Z, that can be written equivalently using energy eigenstates labeled by
n (if the spectrum is discrete) or position eigenstates labeled by q,

Z ≡ Tr e−
i
~ ĤT =

∑
n

e−
i
~EnT =

∫
dq 〈q|e−

i
~ ĤT |q〉 , (32)

can be Wick rotated with T → −iβ. Setting as usual ~ = 1, one obtains the statistical partition
function ZE of the quantum system with hamiltonian Ĥ

ZE ≡ Tr e−βĤ =
∑
n

e−βEn =

∫
dq 〈q|e−βĤ |q〉 . (33)

It is now a simple task to obtain a representation of the statistical partition function in
terms of path integrals: one performs a Wick rotation of the path integral action, sets the
initial state (at euclidean time τ = 0) equal to the final state (at euclidean time τ = β), and
sums over all possible states. The paths become closed paths, as q(0) = q(β), and the partition
function becomes

ZE = Tr e−βĤ =

∫
PBC

Dq e−SE [q] (34)

where PBC stands for “periodic boundary conditions”, indicating the sum over all paths that
close on themselves in an euclidean time β.

Though introduced here for the free theory, the Wick rotation is supposed to be of more
general value, relating quantum mechanics to statistical mechanics in the interacting case as
well. Even if one is interested in the theory with a real time, often one works in the euclidean
version of the theory, where factors of the imaginary unit i are absent, and path integral
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convergence is more easily kept under control. Only at the very end one performs the inverse
Wick rotation to read off the result for the minkowskian theory.

The Wick rotation procedure is better appreciated by considering the usual minowskian
time as the real line of a complex plane: denoting the complex time by tθ = te−iθ, the usual
real time corresponds to θ = 0, while the euclidean time τ is obtained at θ = π

2
. The analytical

continuation of all physical quantities is achieved by continually increasing θ form 0 to π
2
, a

clockwise rotation of the real axis into the imaginary one. The generalized partition function
Zθ = Tr e−

i
~ Ĥtθ with a complex time te−iθ with positive t has a damping factor for all 0 < θ ≤ π

2

and for all hamiltonians that are bounded from below (up to an overall factor due to the value
of the ground state energy, if that happens to be negative).

Similar considerations can be made for path integrals in minkowskian and euclidean times.
Path integrals in euclidean times are mathematically better defined (one may develop a mathe-
matically well defined measure theory on the space of functions), at least for quadratic actions
and perturbations thereof. Path integral with a minkowskian time are more delicate, and physi-
cists usually use the argument of rapid phase oscillations to make unwanted terms vanish. The
Wick rotation suggests a way of defining the path integral in real time starting from the one
with euclidean time. These points of mathematical rigor are not necessary for the applications
described in this book, and the derivation of path integrals described previously is enough for
our purposes.

3.3 Miscellaneous comments

We have seen that the quantization of a classical system with action S[x] is achieved by the

path integral
∫
Dxe

i
~S[x] that computes the transition amplitude.

At the classical level, the solutions of the equations of motion are those that extremize
the action and make it a minimum (“principle of minimal action”). Thus xcl(t) solves the
equations of motion only if the extremality condition δS[xcl] = 0 is satisfied. This is generically
all that one needs for classical problems. In the quantum theory one needs instead the value of
the action for all configurations x(t), as each configuration contributes to the total amplitude

with the phase e
i
~S[x(t)]. This indicates that a more extended use of the action is required for

extracting the quantum properties of a physical system.
In the path integral formulation the classical limit is intuitive: macroscopic systems have

large values of action in ~ units. Macroscopically small variations of paths can still make the
phase variations δS[x]

~ much bigger than π, so that amplitudes of nearby paths get canceled
by destructive interference. This is true except for variations that make δS[x] = 0, which is
precisely the condition that identifies the classical path. Nearby paths have amplitudes that
sum coherently with the classical one, and the path integral is dominated by the classical
trajectory.

The notation
∫
Dx is symbolic and indicates the formal integration over the space of func-

tions x(t). To make it precise one has to regulate the functional space by making it finite
dimensional (a procedure called “regularization”). Then one integrates over the regulated
finite-dimensional space, and eventually takes the continuum limit by removing the regulariza-
tion. If this procedure is done with enough care, the limit exists and gives the correct transition
amplitude. In the previous derivation we have seen that the space of paths is regulated by ap-
proximating the functions x(t) by their N − 1 values computed at intermediate points, the xk’s
with k = 1, ..., N − 1. This makes the space of functions finite dimensional. The action is
also discretized and evaluated using the approximated functions. At this stage the integration
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over the regulated functional space is well defined. Eventually one takes the continuum limit
(N → ∞): if the integration measure is chosen appropriately, as in eq. (20), this limit exists
and gives a viable definition of the path integral.

We have proceeded starting from canonical quantization and derived the above discretized
form of the space of functions. This regularization is often called Time Slicing (TS). Viceversa,
one can start directly with the path integral, regulate it suitably, and use it to construct
the quantum theory. This can be viewed as an alternative approach to quantization. In
the regularization procedure one must make several choices, and they may produce different
transition amplitudes. For example, in a TS regularization one may discretize the potential
term V (x(t)) in the action to V (xk) or V (xk−1) or V (1

2
(xk + xk−1). In the present case this

makes no difference, and one obtains the same continuum limit, but for more complicated
interactions, such as those arising from the coupling to gauge fields or in the presence of
a nontrivial background metric, different discretizations may produce different final answers.
These ambiguities are the path integral counterparts of the ordering ambiguities of canonical
quantization. Given a regulated path integral, one may compute the transition amplitude and
find the corresponding quantum hamiltonian by checking which Schrödinger equation it satisfies.
Alternatively, one may compute some other observable to find the precise correspondence with
canonical quantization.

Any regularization can be used to solve a physical problem, as different regularizations
are related by “counterterms”, that is extra potential terms that added to the action in one
regularization scheme produce the result of another regularization scheme. Of course, a given
regularization may be easier to deal with than others. It is often the case that one is interested
in studying a system characterized by a particular quantum hamiltonian. To treat the problem
with path integrals, once one has chosen a consistent regularization, he must add counterterms
to make sure that the correct hamiltonian is reproduced by the regulated path integral. This is
typical when dealing with motions on curved spaces, though in a milder form this happens also
when considering the coupling to gauge fields. Counterterms are always local function. In the
language of quantum field theory, quantum mechanics is a super-renormalizable QFT in one
dimension, with coupling constants parametrized by the scalar, vector and tensor potentials.
As we shall see later on, potential infinities that may appear at low loop order are actually
absent if one considers the contributions coming from the nontrivial path integral measure.
The remaining finite ambiguities are eliminated by the chosen regularization scheme.

A regularization scheme, alternative to TS, can be obtained by considering the Fourier
expansion of the functions belonging to the space of paths (or alternatively an expansion in
a complete set of orthonormal functions). The regularization is achieved by truncating the
expansion at a given high mode M . Path integration is then defined as the integration over the
finite number of mode coefficients. The continuum limit is obtained by removing the cut-off
M , i.e. sending M →∞. Such a regularization is called Mode Regularization (MR).

Yet another regularization is based on extending the time dimension to higher dimensional
spacetimes of dimension D, analytically continued to be a complex number. It is called Dimen-
sional Regularization (DR), and though more abstract than the previous ones, it has its own
virtues. All these regularizations will be exemplified when studying the motion in curved space
in chapter ??.

We have introduced path integrals by considering a single degree of freedom. Extension
to a finite number of degrees of freedom is immedate, so that quantizing the motion of one
or more particles in a finite dimensional space does not pose any conceptually new problem.
For example, the motion of a nonrelativistic particle in R3 with cartesian coordinates ~x, in the
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presence of a scalar potential V (~x), is quantized by the following discretized path integral

∫
Dxe

i
~S[x] = lim

N→∞

∫ (N−1∏
k=1

d3xk

)( m

2πi~ε

) 3N
2
e
iε
~
∑N
k=1

[
m
2

(~xk−~xk−1)
2

ε2
−V (~xk−1)

]
.

(35)

Formally, one can also consider the case of an infinite number of degrees of freedom, as
appropriate for a field theory. In this case convergence is not guaranteed, and the removal of
the regularization may lead to an infinite result. In the class of theories called renormalizable,
the infinites can be removed consistently by a renormalization procedure that redefines the field
variables and the coupling constants, and allows to obtain, at least at the level of perturbation
theory, finite results.

4 Correlation functions

Correlation functions are quantities used to describe physical observables in the quantum theory.
They are useful to develop the perturbative expansion around the solvable gaussian path integral
that corresponds to a free theory.

In our one dimensional example the normalized “n-point correlation functions” are defined
by

〈x(t1)x(t2) . . . x(tn)〉 =
1

Z

∫
Dxx(t1)x(t2) . . . x(tn) e

i
~S[x] (36)

where Z =
∫
Dxe

i
~S[x] provides the normalization to guarantee that 〈1〉 = 1. Thus, correlation

functions are normalized averages of the product of n dynamical variables evaluated at different
times and weighted by e

i
~S. Of particular importance is the 2-point function 〈x(t1)x(t2)〉, often

called the propagator. It is understood that correlation functions depend implicitly on the
initial and final states. Very often, especially in quantum field theory, one chooses the initial
and final states to be the vacuum state (the state with lowest energy), and also considers an
infinite propagation time. We mostly consider amplitudes between positions eigenstates, but
using (8) one can insert any desired state as boundary state.

In this book we are going to use path integrals, but it is useful to compare with the corre-
sponding definition of correlation functions given in canonical quantization as well. We have
employed the Schrödinger picture to evaluate the transition amplitude. In this picture oper-
ators are time independent and states acquire the time dependence by the Schrödinger equa-
tion. To state the equivalent definition of the n-point correlation function, given the times
t1, t2, ..., tn, one has to reorder them from the earliest to the latest one, i.e. use the permutation
T (1), T (2), ..., T (n) of the numbers 1, 2, ..., n such that tT (1) < tT (2) < ... < tT (n). Then one
defines

〈x(t1)x(t2) · · ·x(tn)〉 =
1

Z
〈xf |e−

i
~ Ĥ(tf−tT (n))x̂ e−

i
~ Ĥ(tT (n)−tT (n−1)) · · · (37)

· · · e−
i
~ Ĥ(tT (3)−tT (2))x̂ e−

i
~ Ĥ(tT (2)−tT (1))x̂ e−

i
~ Ĥ(tT (1)−ti)|xi〉

where Z = 〈xf |e−
i
~ Ĥ(tf−ti)|xi〉 is the transition amplitude. The time ordering guarantees that

in the path integral derivation, due to the time slicing procedure, each position operator is
substituted by the eigenvalue of the eigenstate that is carried by the resolution of the identity
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inserted next to the operator under consideration. This is always the case, as for very large
N the time discretization is sufficiently fine to have a resolution of the identity next to the
position of any operators x̂.

Equivalently, in the Heisenberg picture, one assigns the time evolution to the operators
while states are time independent. Heisenberg’s equations of motion (Heisenberg’s “matrix
mechanics”) read as

i~
dx̂H
dt

= [x̂H , Ĥ] (38)

where the subscript H refers to operators in the Heisenberg picture. They correspond to the
quantum version of Hamilton’s equations, with the Poisson bracket substituted by a commu-
tator that takes the value of i~ times the classical Poisson bracket. For a time independent
hamiltonian the solution can formally be written as

x̂H(t) = e
i
~ Ĥtx̂H(0)e−

i
~ Ĥt (39)

where the value of x̂H(0) can be identified with the time independent Schrödinger operator x̂.
Eigenstates of x̂H(t) can be written as |x, t〉H

x̂H(t)|x, t〉H = x|x, t〉H . (40)

The relation to the Schrödinger picture is simply given in terms of the unitary operator e
i
~ Ĥt.

This operator relates the two pictures which are then unitarily equivalent, as guaranteed by
the Stone–von Neumann theorem. Correlation functions in the Heisenberg picture are defined
by

〈x(t1)x(t2)...x(tn)〉 =
1

Z
H〈xf , tf |T x̂(t1)x̂(t2) · · · x̂(tn) |xi, ti〉H (41)

where the symbol T indicates time ordering, i.e. the prescription of ordering the operators
in such a way that they have an increasing value of time when going form right to left. The
value of the transition amplitude that normalizes the expression is written in such a picture as
Z = H〈xf , tf |xi, ti〉H .

It is useful to collect all correlation functions into a single object Z[J ], called the generating
functional of correlation functions. One uses an arbitrary function J(t), called “source”, and
defines

Z[J ] =
∞∑
n=0

1

n!

(
i

~

)n ∫
dt1dt2 . . . dtn 〈x(t1)x(t2) · · ·x(tn)〉U J(t1)J(t2) · · · J(tn)

=

∫
Dxe

i
~ (S[x]+

∫
dt Jx) (42)

where the subscript “U” indicates un-normalized correlation functions, i.e. correlation functions
obtained without dividing by Z. The expression in terms of the path integral is proven by
functionally deriving n times with respect to the source J(t), and then setting J(t) = 0.

Thus the correlation functions are obtained by functionally differentiation of the generating
functional Z[J ] as follows

〈x(t1)x(t2) · · ·x(tn)〉 =
1

Z

(
~
i

)n
δnZ[J ]

δJ(t1)δJ(t2) · · · δJ(tn)

∣∣∣∣
J=0

(43)
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where Z = Z[0] is the normalizing factor.
To proceed swiftly, and give suitable gaussian formulae, it is useful to introduce an hypercon-

densed notation that allows to treat path integrals, including those for field theories, formally
as ordinary integrals. The hypercondensed notation is defined by lumping together discrete
and continuous indices into a single index, so that a variable φi can be used as a shorthand
notation for the position x(t) of the particle, identifying

x → φ

t → i (44)

For a field, as for example the vector quadripotential Aµ(xν), the hypercondensed notation is
obtained by identifying

A → φ

µ, xν ≡ µ, x0, x1, x2, x3 → i (45)

where now the index i contains a discrete part (the discrete index µ = 0, 1, 2, 3) and a con-
tinuous part (the space-time coordinates xν = (x0, x1, x2, x3) ∈ R4). Indices may be lowered
with a metric, which in many cases is simply given by the identity matrix but it allows for
more general situations. Repeated indices are understood to be summed over (the Einstein
summation convention). Thus, in the above cases the notation φiφi stands for

∫
dt x(t)x(t) and∫

d4xAµ(x)Aµ(x), respectively. Of course, one must pay attention to simple looking expressions
as they include integrations or infinite sums and might not converge.

With such a notation we are ready to review the definition of correlation functions, introduce
few more generating functionals, and present gaussian integration formulae. We are going to
describe also the Wick theorem, that gives a simple way of computing correlation functions in
a free (gaussian) theory in terms of the 2-point function.

The path integral in (21) can be written as∫
Dφe

i
~S[φ] (46)

and correlation functions by

〈φi1φi2 · · ·φin〉 =
1

Z

∫
Dφ φi1φi2 · · ·φine

i
~S[φ] . (47)

The generating functional takes the form

Z[J ] =

∫
Dφ e

i
~ (S[φ]+Jiφ

i) (48)

and generates all correlation functions by differentiation (in hypercondensed notation functional
derivatives read as standard derivatives, though we keep using the symbol δ of functional
derivative)

〈φi1φi2 · · ·φin〉 =
1

Z[0]

(
~
i

)n
δ

δJi1

δ

δJi2
· · · δ

δJin
Z[J ]

∣∣∣∣
J=0

. (49)

We can now define the generating functional of connected correlation functions W [J ] by the
relation

Z[J ] = e
i
~W [J ] ⇒ W [J ] =

~
i

lnZ[J ] . (50)
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One can prove that it generates connected correlation functions by

〈φi1φi2 · · ·φin〉c =

(
~
i

)n−1
δ

δJi1

δ

δJi2
· · · δ

δJin
W [J ]

∣∣∣∣
J=0

. (51)

It is also useful to define the effective action Γ[ϕ] as the Legendre transform of the W [J ]
functional

Γ[ϕ] = min
J

{
W [J ]− Jiϕi

}
(52)

which can be treated as a classical action that includes all quantum corrections. It also generates
the so called one-particle irreducible (1PI) correlation functions. The minimum in J is obtained

at ϕi = δW [J ]
δJi

, a relation that should be inverted to obtain Ji = Ji(ϕ) and inserted into the

right hand side of (52) to obtain the effective action as a functional of the variable ϕi.
The last two functionals find their main applications in quantum field theory, but we will

have the chance of employing the generating functional of connected correlation functions in
later applications of the worldline approach.

4.1 Digression over gaussian integrals

Gaussian integrals in one or more variables are easily computed. For a real variable φ they are
given by ∫ ∞

−∞

dφ√
2π

e−
1
2
Kφ2 =

1√
K∫ ∞

−∞

dφ√
2π

e−
1
2
Kφ2+Jφ =

1√
K

e
1
2

1
K
J2

(53)

with K a real positive number. The first one is the standard gaussian integral, whose square
is easily computed in polar coordinates. The second one is obtained by square completion, i.e.
writing −1

2
Kφ2 + Jφ = −1

2
K(φ− J

K
)2 + 1

2
1
K
J2, then shifting the measure from φ to φ− J

K
to

obtain the desired result.
They are straightforwardly extended to n real variables∫

dnφ

(2π)
n
2

e−
1
2
φiKijφ

j

= (detKij)
− 1

2∫
dnφ

(2π)
n
2

e−
1
2
φiKijφ

j+Jiφ
i

= (detKij)
− 1

2 e
1
2
JiG

ijJj (54)

where Kij is a real positive definite matrix Kij (all eigenvalues must be strictly positive), and
Gij its inverse (so that KijG

jk = δki ). The first integral is immediate if Kij is diagonal, and
valid in full generality by noting that Kij is diagonalizable by an orthogonal transformation
which leaves the measure invariant. The last integral is obtained again by square completion.

These gaussian integrals are suitable for euclidean path integrals, as in the hypercondensed
notation path integrals look very much like ordinary integrals. Of course the definition of de-
terminants for infinite dimensional matrices is delicate and requires a regularization procedure.
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By analytical extension one obtains gaussian integrals suitable for quantum mechanics∫
dnφ

(−2πi)
n
2

e−
i
2
φiKijφ

j

= (detKij)
− 1

2∫
dnφ

(−2πi)
n
2

e−
i
2
φiKijφ

j+iJiφ
i

= (detKij)
− 1

2 e
i
2
JiG

ijJj (55)

where again Gij is the inverse of Kij. Convergence to the given values is guaranteed if Kij has a
small negative imaginary part (e.g. K = K0− iε with K0 real and ε > 0) that assure a gaussian
damping for |φ| → ∞ (in quantum field theory this corresponds to the causal iε Feynman
prescription). In an hypercondensed notation, with the identification of

∫
Dφ ≡ dnφ

(−2πi)
n
2

, these

formulae give the formal solution of path integrals and corresponding generating functional for
free theories without gauge invariances, in either quantum mechanics or quantum field theory.
Gauge invariances correspond to the vanishing of detKij, and one must apply a gauge fixing
procedure to obtain a finite answer.

4.2 Free theory

It is useful to study the free theory as it provides additional intuition. A free theory is described
by a quadratic action

S[φ] = −1

2
φiKijφ

j (56)

which gives the linear equations of motion Kijφ
j = 0. We assume Kij invertible so that there

are no gauge symmetries. ??? Denoting Dφ ≡ dnφ

(−2πi)
n
2

, setting ~ = 1, and using eq. (55), one

can calculate the path integral with sources

Z[J ] =

∫
Dφ ei(S[φ]+Jiφ

i) = (detKij)
− 1

2 e
i
2
JiG

ijJj . (57)

Then, recalling eq. (49) one immediately obtains the following correlation functions

〈1〉 = 1
〈φi〉 = 0
〈φiφj〉 = −iGij . (58)

The first one is a consequence of the normalization, the second one reflects the symmetry
φi → −φi, and the third one is the propagator, which we recognize to be proportional to the
inverse of the kinetic matrix Kij.

Continuing with the calculation of higher point functions, we see that all correlation func-
tions with an odd number of points vanish, again a signal of the symmetry φi → −φi. Those
with an even number n factorize instead into a sum of (n− 1)!! terms given by the product of
the 2-point functions which connect any two points in all possible ways, a fact known also as
the “Wick theorem”. For example, the 4-point correlation function is given by

〈φ1φ2φ3φ4〉 = 〈φ1φ2〉〈φ3φ4〉+ 〈φ1φ3〉〈φ2φ4〉+ 〈φ1φ4〉〈φ2φ3〉 (59)

that indeed contains the sum of 3!! terms. This correlation function is not connected, as it
disconnects into the sum of products of correlation functions of lower order.
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The generating functional of connected correlation functions W [J ] is easily obtained from
eq. (50)

W [J ] =
1

2
JiG

ijJj − Λ (60)

where Λ = − i
2

ln det(Kij) = − i
2

tr ln(Kij) is a constant, whose precise value is often not needed.
One easily verifies that all of its correlation functions (0- and 2-points) are connected.

Let us also calculate the effective action. The minimum in J of eq. (52) is achieved for

δW

δJi
= ϕi =⇒ ϕi = GijJj =⇒ Ji = Kijϕ

j (61)

so that

Γ[ϕ] = −1

2
ϕiKijϕ

j − Λ . (62)

Thus we see that for a free theory the effective action Γ[ϕ] coincides with the original action S[ϕ]
up to the additive constant Λ, that can be interpreted as a vacuum energy of quantum origin.
The latter can be disregarded if the gravitational interactions are neglected. In general, the
effective action can be considered as a classical action that contains all the effects of quantization
in its couplings (and thus should not be quantized again).

4.3 Harmonic oscillator

Let us work out explicitely the case of a harmonic oscillator with unit mass

S[x] =

∫ ∞
−∞

dt
(1

2
ẋ2 − ω2

2
x2
)
, Z[J ] =

∫
Dxe

i
~ (S[x]+

∫
dt Jx) (63)

already solved formally in the previous section. We can repeat briefly the deduction without
using the hypercondensed notation. We consider an infinite propagation time and a transition
amplitude between the ground state, which classically is achieved for x = 0. The action in the
exponent can be manipulated with an integration by parts without producing boundary terms.
Indeed imposing that x(t) be in its classical vacuum at initial and final times gives a vanishing
boundary term (another justification will be given later on when treating the euclidean version
of the problem)

S[x] = −
∫
dt

1

2
x(t)

( d2

dt2
+ ω2

)
x(t)

= −
∫
dtdt′

1

2
x(t)

( d2

dt2
+ ω2

)
δ(t− t′)x(t′)

≡ −
∫
dtdt′

1

2
x(t)K(t, t′)x(t′) (64)

where a Dirac delta function δ(t − t′) has been introduced to expose the “kinetic matrix”
K(t, t′) = ( d

2

dt2
+ ω2)δ(t − t′), i.e. the differential operator of the harmonic oscillator. The

inverse of this matrix (the Green function of the differential operator), is easily written in
Fourier transform

G(t, t′) = −
∫

dp

2π

e−ip(t−t
′)

p2 − ω2
(65)
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that indeed satisfies the defining equation∫
dt′′K(t, t′′)G(t′′, t′) =

( d2

dt2
+ ω2

)
G(t, t′) = δ(t− t′) . (66)

Now one can complete the square in (63) and find

Z[J ] =

∫
Dxe

i
~ (S[x]+

∫
dt Jx)

=

∫
Dx exp

i

~

[
−
∫
dtdt′

(1

2
x(t)K(t, t′)x(t′)− J(t)δ(t− t′)x(t′)

±1

2
J(t)G(t, t′)J(t′)

)]
= exp

( i

2~

∫
dtdt′ J(t)G(t, t′)J(t′)

)∫
Dx̃ exp

(
− i

~

∫
dtdt′

1

2
x̃(t)K(t, t′)x̃(t′)

)
︸ ︷︷ ︸

det−1/2[ 1~K(t,t′)]≡N

= N exp
( i

2~

∫
dtdt′ J(t)G(t, t′)J(t′)

)
. (67)

Adding the Feynman iε prescription for specifying how to integrates around the poles p = ±ω
(ω2 → ω2 − iε with ε→ 0+) one may compute

G(t, t′) = −
∫

dp

2π

e−ip(t−t
′)

p2 − ω2 + iε
=

i

2ω
e−iω|t−t

′| . (68)

The 2-point function (i.e. the Feynman propagator DF ) is then

〈x(t)x(t′)〉 =

∫
Dxx(t)x(t′)e

i
~S[x]∫

Dxe
i
~S[x]

=
1

Z[0]

(
~
i

)2
δ2Z[J ]

δJ(t)δJ(t′)

∣∣∣∣
J=0

= −i~G(t, t′)

=
~

2ω
e−iω|t−t

′| ≡ DF (t, t′) . (69)

4.3.1 Harmonic oscillator in euclidean time

The statistical partition function in the limit of vanishing temperature (Θ→ 0), or equivalently
for an infinite euclidean propagation time (β →∞), takes a simple form

ZE = Tr e−βĤ =
∑
n

e−βEn
β→∞−→ e−βE0 + subleading terms. (70)

This is true even in the presence of a source J if one assumes that the source is nonvanishing
only in a finite interval of time: the remaining infinite time is sufficient to project the operator
e−βĤ onto the ground state. This allows us to rewrite the generating functional Z[J ] in the
euclidean case in a simpler way, justifying in yet another way the dropping of boundary terms
in the integration by parts. The statistical partition function is obtained by using periodic
boundary conditions, so that for large β one gets the projection onto the ground state

ZE[J ] =

∫
PBC

Dxe−SE [x]+
∫
dτ Jx = lim

β→∞

〈
0,
β

2

∣∣∣0,−β
2

〉
J

SE[x] =

∫ ∞
−∞

dτ
(1

2
ẋ2 +

ω2

2
x2
)

(71)
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where we have indicated the transition amplitude between vacuum states using the Heisenberg
picture with the subscript J that indicates the presence of a source. We can now repeat the
previous calculation in the present context. For closed paths one may integrate by parts without
encountering boundary terms, and the path integral is strictly gaussian

ZE[J ] =

∫
PBC

Dx exp
[
−
∫
dτ
(1

2
x(τ)

(
− d2

dτ 2
+ ω2

)
x(τ)− J(τ)x(τ)

]
= N exp

[1

2

∫
dτdτ ′ J(τ)GE(τ, τ ′)J(τ ′)

]
(72)

where the euclidean Green function GE is given by

GE(τ, τ ′) =
[
− d2

dτ 2
+ ω2

]−1

=

∫
dpE
2π

e−ipE(τ−τ ′)

p2
E + ω2

. (73)

This euclidean Green function is unique: there are no poles and related prescriptions to specify
how to perform the integration. The inverse Wick rotation implies τ ≡ tE → itM ≡ it and
pE → −ipM ≡ −ip, with the latter arising form the requirement that the correct Fourier
transform is kept during the analytic deformation. Indeed

GE(τ, τ ′) =

∫
dpE
2π

e−ipE(τ−τ ′)

p2
E + ω2

→

→ −i
∫
dpM
2π

e−ipM (t−t′)

−p2
M + ω2

= −iGM(t, t′) ≡ DF (t, t′) (74)

where DF (t, t′) is the Feynman propagator in (69) (with ~ = 1). Calculating (73), or Wick
rotating directly (69), produces the euclidean propagator

〈x(τ)x(τ ′)〉 =
1

2ω
e−ω|τ−τ

′| . (75)

We recognize that the Feynman propagator is the unique analytical extension of the eu-
clidean two point function. All other Green functions, such as the retarded or advanced ones,
correspond to different boundary conditions that can be implemented with different prescrip-
tions for performing the integration around the poles. They cannot be Wick rotated as one
would encounter poles in the analytic continuation.

5 Perturbative expansion

The free theory corresponds to a gaussian path integral which is exactly solvable. With interac-
tions one is often unable to compute exactly the path integral, and one must resort to some sort
of approximation. The simplest one is the perturbative expansion around a free theory, which
consists in expanding the solution in a power series in the coupling constants that parametrize
the interactions. If the couplings are small enough, the perturbative expansion might give a
good approximation to the searched for solution.

We describe the perturbative expansion taking as guiding example the case of an anharmonic
oscillator

S[x] =

∫
dt
(1

2
ẋ2 − ω2

2
x2 − g

3!
x3 − λ

4!
x4
)
. (76)
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When the coupling constants g and λ vanish, the theory is exactly solvable. Thus one may
try to include perturbatively the corrections that arise when g and λ are small enough. It is
convenient to split the action as the sum of two terms, a free part S0 and an interacting one
Sint

S[x] = S0[x] + Sint[x]

S0[x] =

∫
dt
(1

2
ẋ2 − ω2

2
x2
)

Sint[x] =

∫
dt
(
− g

3!
x3 − λ

4!
x4
)
. (77)

Now one can expand in a Taylor series the exponential of the interaction term under the path
integral

Z[J ] =

∫
Dx e

i
~ (S[x]+

∫
Jx (78)

=

∫
Dx e

i
~ (S0[x]+Sint[x]+

∫
Jx)

=

∫
Dx e

i
~Sint[x] e

i
~ (S0[x]+

∫
Jx)

=

∫
Dx

[
1 +

i

~
Sint[x] +

1

2

( i
~
Sint[x]

)2

+ · · ·

· · ·+ 1

n!

( i
~
Sint[x]

)n
+ · · ·

]
e
i
~ (S0[x]+

∫
Jx)

Equivalently, in an obvious notation,

Z[J ] =
〈
e
i
~Sint[x]

〉
U,0,J

(79)

where the subscripts U, 0, J denote un-normalized averaging (U) with the free theory (0) and
in the presence of a source (J). This last expression is sometimes called “Dyson formula”. It
generates immediately the perturbative expansion in terms of Feynman diagrams.

An equivalent way of writing the perturbative series is the following one

Z[J ] =

∫
Dx e

i
~ (S[x]+

∫
Jx) =

∫
Dx e

i
~Sint[x] e

i
~ (S0[x]+

∫
Jx)

= e
i
~Sint[

~
i
δ
δJ

]

∫
Dq e

i
~ (S0[x]+

∫
Jx)

= e
i
~Sint[

~
i
δ
δJ

] Z0[J ] (80)

which presents the solution as a (quite complicated) differential operator acting on the solution
of the free theory Z0[J ]. In particular, all vacuum diagrams are generated by

Z[0] =

∫
Dx e

i
~S[x] = e

i
~Sint[

~
i
δ
δJ

] Z0[J ]
∣∣∣
J=0

. (81)

The expansion in terms of Feynman diagrams is obtained expanding the interactions po-
tential and using the Wick theorem to compute the correlation functions of the free theory:
the vertices generated by the interactions potential contain a coupling constant and quantum
variables that are tied together two by two in all possible ways with the free propagators
((graphically each vertex is denoted by a dot and propagators are denoted by lines). This will
be exemplified next in the case of vacuum diagrams for the anharmonic oscillator.
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5.1 Vacuum diagrams

As a first example we compute perturbatively the corrections to the ground state energy of the
harmonic oscillator due to the anharmonic potential terms. As already mentioned, it is often
the case that one computes using the euclidean version of the theory and only at the very end
performs the inverse Wick rotation to obtain the results in minkowskian time. Thus we will
proceed with the euclidean version of the theory, which is the one used later on in presenting
worldline applications.

Therefore we wish to compute

ZE[J ] =

∫
Dx e−SE [x]+

∫
Jx

SE[x] = lim
β→∞

∫ β/2

−β/2
dτ
(1

2
ẋ2 +

ω2

2
x2 +

g

3!
x3 +

λ

4!
x4
)

(82)

with β →∞. The corrections to the ground state energy can be recognized from the calculation
of

ZE[0] = 〈1〉U = lim
β→∞
〈0|e−βĤ |0〉 = lim

β→∞
e−βE0

=
〈
e−SE,int[x]

〉
U,0

= lim
β→∞

e−β(E
(0)
0 +∆E0) (83)

where the exact energy E0 of the ground state |0〉 differs from the ground state energy of the

harmonic oscillator E
(0)
0 by the term ∆E0 due to the anharmonic potential. The latter can be

obtained perturbatively. We compute now the first non vanishing corrections.
Let us consider first the case with g = 0 and focus on the first correction in λ

ZE[0] = 〈1〉U =
〈
e−SE,int[x]

〉
U,0

=
〈

(1− SE,int[x] + · · · )
〉
U,0

= 〈1〉U,0 −
λ

4!

∫ β/2

−β/2
dτ 〈x4(τ)〉U,0 + · · ·

= 〈1〉U,0
[
1− λ

4!

∫ β/2

−β/2
dτ 〈x4(τ)〉0 + · · ·

]

= 〈1〉U,0
[
1− λ

4!

[
3×
�

]
+ · · ·

]
. (84)

In the last line we have used Wick contractions to calculate normalized correlations functions
in the free theory, and used also a graphical representation in terms of Feynman diagrams. In
this graphical representation a line denotes a propagator that joins two points in time, while
vertices arising form the interactions are denoted by dots. Recalling the euclidean propagator,
computed in eq. (75),

〈x(τ)x(τ ′)〉0 = GE(τ − τ ′) =
1

2ω
e−ω|τ−τ

′| =

�
τ τ ′ (85)

one immediately finds

�
=

∫ β/2

−β/2
dτ G2

E(0) =
β

4ω2
. (86)
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Thus, to this perturbative order one gets

ZE[0] = 〈1〉U,0
[
1− λ

4!

[
3
β

4ω2

]
+ · · ·

]
= 〈1〉U,0 e−

βλ

32ω2
+··· (87)

so that

∆E0 =
1

32

λ

ω2
. (88)

Similarly one may consider the case with g 6= 0 and λ = 0. The first non vanishing correction
is obtained from

ZE[0] = 〈1〉U =
〈(

1− SE,int +
1

2
S2
E,int + · · ·

)〉
U,0

(89)

= 〈1〉U,0 −
g

3!

∫ β
2

−β
2

dτ 〈x3(τ)〉U,0

+
1

2

( g
3!

)2
∫ β

2

−β
2

dτ

∫ β
2

−β
2

dτ ′ 〈x3(τ)x3(τ ′)〉U,0 + · · ·

= 〈1〉U,0
[
1 + 0 +

1

2

( g
3!

)2[
3!×
�

+ 32 ×
�

]
+ · · ·

]
.

Now

�
=

∫ β/2

−β/2
dτ

∫ β/2

−β/2
dτ ′G3

E(τ − τ ′) =
1

8ω3

∫ β/2

−β/2
dτ

∫ ∞
−∞

dσ e−3ω|σ|

=
β

8ω3

2

3ω
(90)

and

�
=

∫ β/2

−β/2
dτ

∫ β/2

−β/2
dτ ′GE(0)GE(τ − τ ′)GE(0)

=
1

8ω3

∫ β/2

−β/2
dτ

∫ ∞
−∞

dσ e−ω|σ| =
β

8ω3

2

ω
(91)

where the limit β →∞ has been used suitably to calculate some integrals. Therefore

ZE[0] = 〈1〉U,0
[
1 +

1

2

( g
3!

)2(
3!

β

12ω4
+ 32 β

4ω4

)
+ · · ·

]
= 〈1〉U,0 e

β 11
8(3!)2

g2

ω4
+···

(92)

and one finds

∆E0 = − 11

288

g2

ω4
. (93)
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5.2 Heat kernel

A second example to illustrate perturbation theory is the calculation of the heat kernel using
path integrals. The heat kernel is the fundamental solution of the heat equation

− ∂

∂β
ψ = Ĥψ (94)

where Ĥ is a second order elliptic differential operator. It can be obtained by Wick rotating
the Schrödinger equation

i
∂

∂t
ψ = Ĥψ (95)

with t → −iβ, as discussed previously. We consider the simple case of an hamiltonian with a
smooth scalar potential V

Ĥ = −1

2
∇2 + V (x) (96)

where ∇2 is the laplacian in cartesian coordinates xi on RD.
The heat kernel is the fundamental solution that can be represented in operatorial form by

ψ(x, y; β) = 〈y|e−βĤ |x〉 . (97)

It satisfies eq. (94) plus the boundary condition

ψ(x, y; 0) = δD(x− y) . (98)

It is well-known that the solution in the free case (i.e. for V = 0) is given by

ψ(x, y; β) =
1

(2πβ)
D
2

e−
(x−y)2

2β . (99)

The path integral which computes the transition amplitude in euclidean time (97) can be
written as

ψ(x, y; β) =

∫ x(β)=y

x(0)=x

Dx e−S[x] (100)

where the symbol
∫ x(β)=y

x(0)=x
Dx indicates the sum over all functions xi(t) which satisfy the bound-

ary conditions xi(0) = xi and xi(β) = yi, whereas the euclidean action S[x] is given by

S[x] =

∫ β

0

dt

(
1

2
δijẋ

iẋj + V (x)

)
. (101)

No confusion should arise in denoting the paths by xi(t) and their boundary values at t = 0
by xi(0) = xi. The path integral cannot be computed exactly for an arbitrary potential V , but
one can compute it perturbatively for small propagation times β, assuming the potential and
its derivatives to be functions that vanish sufficiently fast at infinity.

To start with let us rescale the euclidean time variable t = βτ , so that τ ∈ [0, 1]. The action
(101) can now be written as follows

S[x] =
1

β

∫ 1

0

dτ

(
1

2
δijẋ

iẋj + β2V (x)

)
(102)
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where of course dots (as in ẋi) now represent derivatives with respect to τ . This rescaling is
useful since we are going to compute the path integral in a perturbative expansion valid for
small β.

One can decompose all paths by

xi(τ) = xibg(τ) + qi(τ) (103)

where xibg(τ) is a fixed path (sometimes called the background path, or the classical path)
which can be taken to satisfy the boundary conditions and the classical equations of motion
for V = 0. Thus

xibg(τ) = xi + (yi − xi)τ (104)

as it satisfies the boundary conditions xibg(0) = xi and xibg(1) = yi, as well as the equation of
motion ẍibg(τ) = 0 valid for V = 0. Indeed for small β the potential can be neglected, as evident
from (102). The remaining arbitrary “quantum fluctuations” qi(τ) must then have vanishing
boundary conditions, qi(0) = qi(1) = 0.

The inclusion of an arbitrary potential V makes the problem quite difficult to solve in full
generality. However it can be treated in perturbation theory. The emerging solution will be of
the form

ψ(x, y; β) =
1

(2πβ)
D
2

e−
(x−y)2

2β

(
a0(x, y) + a1(x, y)β + a2(x, y)β2 + . . .

)
(105)

where the so-called Seeley-DeWitt coefficients an depend on the points xi and yi and on the
potential V . Instead of yi it is useful to use the displacement variable

ξi = (yi − xi) (106)

whose length (i.e. the distance between the two points) may be considered of order
√
β for

the brownian motion. Thus β controls the perturbative expansion. Of course a0(x, y) = 1, as
dictated by the free theory.

5.2.1 Perturbative expansion

The perturbative expansion is based on the gaussian averages of the path integral with the free
quadratic action S0 (i.e. the one with V = 0), namely

A =

∫
Dq e−S0[q] =

1

(2πβ)
D
2

〈qi(τ)〉 =
1

A

∫
Dq qi(τ) e−S0[q] = 0

〈qi(τ)qj(σ)〉 =
1

A

∫
Dq qi(τ)qj(σ) e−S0[q] = −βδij∆(τ, σ) (107)

and so on. Here ∆(τ, σ) is the Green function of the operator ∂2

∂τ2
on the space of functions

f(τ) with vanishing boundary conditions at τ = 0 and τ = 1

∂2

∂τ 2
∆(τ, σ) = δ(τ − σ) . (108)
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It reads (for τ and σ in [0, 1])

∆(τ, σ) = (τ − 1)σ θ(τ − σ) + (σ − 1)τ θ(σ − τ) (109)

where θ(x) is the standard step function (θ(x) = 1 for x > 0, θ(0) = 1/2 for x = 0, and θ(x) = 0
for x < 0). Indeed it satisfies the differential equation with the correct boundary conditions.
The two point function 〈qi(τ)qj(σ)〉 is the propagator in the free theory.

Recalling that we indicate the normalized average of an arbitrary functional F [q] by

〈F [q] 〉 =
1

A

∫
Dq F [q] e−S0[q] (110)

we compute the perturbative expansion as follows. The action is written as

S[x] = S0[x] + Sint[x] (111)

where the free part is given by

S0[q] =
1

β

∫ 1

0

dτ
1

2
δijẋ

iẋj (112)

and the interaction part by

Sint[x] = β

∫ 1

0

dτ V (x) . (113)

The path integral can now be manipulated as follows∫ x(β)=y

x(0)=x

Dx e−S[x] =

∫ x(β)=y

x(0)=x

Dx e−(S0[x]+Sint[x])

= e−S0[xbg ]

∫ q(β)=0

q(0)=0

Dq
(
e−Sint[xbg+q]

)
e−S0[q]

= Ae−S0[xbg ]
〈
e−Sint[xbg+q])

〉
=

1

(2πβ)
D
2

e−
(x−y)2

2β

〈(
1− Sint[xbg + q] +

1

2
S2
int[xbg + q] + · · ·

)〉
.

(114)

The transition from the first to the second line is due to the translation invariance of the path
integral measure, Dx = D(xbg + q) = Dq, since xbg(τ) = xi + ξiτ is a fixed function. Then we
used the notation in (110) to indicate normalized averages with the free path integral. Finally,
the perturbative expansion is generated by expanding the interaction part, as shown in the last
line.

Let us compute systematically the various terms appearing in the last line of eq. (114). The
first one is trivial

〈1〉 = 1 (115)

since correlations functions are normalized. Next we have to consider 〈Sint[xbg + q]〉. We can
Taylor expand the potential around the initial point xi

Sint[xbg + q] = β

∫ 1

0

dτ V (xbg + q) (116)

= β

∫ 1

0

dτ
(
V (x) + [ξiτ + qi(τ)]∂iV (x)

+
1

2
[ξiτ + qi(τ)][ξjτ + qj(τ)] ∂i∂jV (x) + · · ·

)
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from which one obtains

〈−Sint[xbg + q]〉 = −βV (x)− β

2
ξi∂iV (x)− β

6
ξiξj∂i∂jV (x)

− β

2
∂i∂jV (x)

∫ 1

0

dτ 〈qi(τ)qj(τ)〉+ · · · (117)

with the last term computed using the free propagator in (107) and (109)∫ 1

0

dτ 〈qi(τ)qj(τ)〉 =

∫ 1

0

dτ (−βδij∆(τ, τ))

= −βδij
∫ 1

0

dτ τ(τ − 1) =
β

6
δij (118)

so that

〈−Sint[xbg + q]〉 = −βV (x)− β

2
ξi∂iV (x)− β

6
ξiξj∂i∂jV (x)

− β

12
∇2V (x) + · · · . (119)

Similarly, at lowest order in β one gets for the next term in (114)〈1

2
S2
int[xbg + q]

〉
=
β2

2
V 2(x) + · · · . (120)

Collecting all the terms, we find that at this order the heat kernel is given by

ψ(x, y; β) =
1

(2πβ)
D
2

e−
(x−y)2

2β

[
1− βV (x)− β

2
ξi∂iV (x)− β

6
ξiξj∂i∂jV (x)

− β2

12
∇2V (x) +

β2

2
V 2(x) + · · ·

]
(121)

from which one reads off the expansion around the point x of the Seeley-DeWitt coefficients
a0, a1 and a2

a0(x, y) = 1

a1(x, y) = −V (x)− 1

2
ξi∂iV (x)− 1

6
ξiξi∂j∂jV (x) + · · ·

a2(x, y) =
1

2
V 2(x)− 1

12
∇2V (x) + · · · . (122)

In particular, their values at coinciding points yµ = xµ (i.e. for ξµ = 0) are given exactly by

a0(x, x) = 1

a1(x, x) = −V (x)

a2(x, x) =
1

2
V 2(x)− 1

12
∇2V (x) . (123)

This calculation exemplifies again perturbation theory and the use of the path integrals to
compute heat kernels.
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5.3 Gaussian formulae

We collect here some gaussian formulae used in the previous examples plus some additional ones
to be used later on in the book. We use the hypercondensed notation for quantum mechanics
and quantum field theory in euclidean time, and setting Dφ = dnφ

(2π)
n
2

one also recovers the finite

dimensional case.
The required formulae arise from the following gaussian integrals

Z ≡
∫
Dφ e−

1
2
φiKijφ

j

= (detKij)
− 1

2

Z[J ] ≡
∫
Dφ e−

1
2
φiKijφ

j+Jiφ
i

= (detKij)
− 1

2 e
1
2
JiG

ijJj (124)

where Gij is the inverse of the kinetic matrix Kij (i.e. KijG
jk = δki ) and gives the propagator.

It corresponds to a Green function when Kij is a differential operator. The first one is the
standard gaussian integral and the second one is obtained by “completing the square” and
shifting integration variables.

The normalized correlation functions follow from differentiating Z[J ]

〈φi1φi2 · · ·φin〉 =
1

Z

∫
Dφ φi1φi2 · · ·φine−

1
2
φiKijφ

j

=
1

Z

δn

δJi1Ji2 · · · Jin
Z[J ]

∣∣∣
J=0

=
δn

δJi1Ji2 · · · Jin
e

1
2
JiG

ijJj

∣∣∣
J=0

(125)

obtaining in particular

〈1〉 = 1

〈φi〉 = 0

〈φiφj〉 = Gij

〈φiφjφk〉 = 0

〈φiφjφkφl〉 = GijGkl +GikGjl +GilGjk (126)

and so on. In particular, correlation functions of an odd number of fields φi vanish. Those with
an even number of fields are given by sums of products of two-point functions. The two-point
function is also known as the Feynman propagator.

In the second part of the book we will need more general correlation functions containing
the insertion of an exponential eipiφ

i
. Denoting by Z[J, p] the following functional

Z[J, p] =

∫
Dφ e−

1
2
φiKijφ

j+(Ji+ipi)φ
i

= (detKij)
− 1

2 e
1
2

(Ji+ipi)G
ij(Jj+ipj) (127)

with Z[0, 0] = Z, we find again that the desired correlation functions are obtained by differen-
tiating with respect to the source J and then setting it to zero

〈φi1φi2 · · ·φineipkφk〉 =
1

Z

∫
Dφ φi1φi2 · · ·φineipkφk e−

1
2
φiKijφ

j

=
1

Z

δn

δJi1Ji2 · · · Jin
Z[J, p]

∣∣∣
J=0

=
δn

δJi1Ji2 · · · Jin
e

1
2

(Jm+ipm)Gmn(Jn+ipn)
∣∣∣
J=0

(128)
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obtaining in particular

〈eipkφk〉 = e−
1
2
pmGmnpn

〈φieipkφk〉 = iGijpj e
− 1

2
pmGmnpn

〈φiφjeipkφk〉 = (Gij − pkGkiplG
lj) e−

1
2
pmGmnpn (129)

and so on. The exponential eipkφ
k

correspond to vertex “operators” appearing in the worldline
formalism.

These identities are also proven in QFT by using Wick’s theorem: in the form adapted to
QFT they were derived by Gian-Carlo Wick using operators. The mnemonics to write them
down, without computing again the derivatives with respect to the source is as follows.

In the absence of the exponential (i.e. with pi = 0), one connects any two quantum fields in
all possible ways, and each pair of fields that is connected (called a Wick-contraction, or simply
contraction) is substituted by the propagator Gij. As an example, in the 4-point function in
(126) one contracts the first field with any other (it can be done in three ways) and substitutes
this first pair with the propagator, which is a function that is brought outside the correlation
function. The remaining last two fields necessarily gets paired together and substituted again
by the propagator. Thus we get a sum of 3!! terms containing the products of 2 free propagators.
Similarly, the correlation function of 2m fields is given by the sum of (2m−1)!! terms containing
each the products of m free propagators.

In the presence of the exponential, one again connects any field not in the exponent with
any other in all possible ways, but in addition it can be Wick-contracted with the exponential
as well. In the latter case it acts as a derivation: it regenerates the exponential (that remains in
the correlation function and participates to further contractions) multiplied by the contraction
of the field with the exponent, that produces a propagator times the factor associated to the
field in the exponent. One continues this procedure iteratively with all the fields left which are
not in the exponent. Eventually, there is only the exponential left, that gives rise to the first
line in (129). Again, an example can clarify this recipe. Let us consider the 2-point function in
(129). The first term in the bracket is due to the Wick-contraction of the two fields together,
the second one corresponds to the Wick-contraction of each field with the exponential.

Finally, let us collect here in the hypercondensed notation the formulae defining the various
generating functionals in euclidean conventions. They find their most useful application in
path integrals for QFTs. The generating functional for connected correlation functions W [J ]
is obtained from the path integral with sources by

Z[J ] = eW [J ] =

∫
Dφ e−S[φ]+Jiφ

i

(130)

so that
W [J ] = lnZ[J ] . (131)

The effective action is defined by the Legendre transform

Γ[φ] = min
J

{
Jiφ

i −W [J ]
}
. (132)

The functionals S[φ], Z[J ], W [J ], Γ[φ] are very useful especially in quantum field theory. For
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a free theory (without gauge invariances) one has

S[φ] =
1

2
φiKijφ

j

Z[J ] = (detK)−
1
2 e

1
2
JiG

ijJj

W [J ] =
1

2
JiG

ijJj −
1

2
tr lnK

Γ[φ] =
1

2
φiKijφ

j +
1

2
tr lnK . (133)

The constant tr lnK generically depends on the coupling constants of the theory and on even-
tual background fields . When computing one loop effective actions for QFT in the presence of
external fields, but without the source for the quantum variable itself, this constant identifies
the (one-loop) effective action. Indeed, setting φi = 0 in there last formula one gets

Γ ≡ Γ[0] =
1

2
tr lnK . (134)

Using the identity

ln
a

b
= −

∫ ∞
0

dT

T

(
e−aT − e−bT

)
, (135)

proven by verifying that both sides identify the same function (both sides have the same deriva-
tive in a and the same value for a = b), and formally extending it to operators, one finds the
representation of the effective action in terms of the Fock-Schwinger proper time T

Γ =
1

2
tr lnK = −1

2

∫ ∞
0

dT

T
tr
(
e−KT − e−T

)
. (136)

Dropping the last (infinite) constant, that eventually is taken care of in the QFT renormalization
procedure, one finds the famous Schwinger formula

Γ = −1

2

∫ ∞
0

dT

T
tr e−KT . (137)

In subsequent parts of the book, this one-loop QFT effective action is reinterpreted and analyzed
in terms of worldline path integrals.
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