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General relativity
(notes for “Relativity” a.a. 2020/21)

Fiorenzo Bastianelli

1 Foreword

There are many books on General Relativity. For this course I will follow mostly
S. Weinberg: “Gravitation and Cosmology”, John Wiley & Sons, 1972
for an introduction to tensor analysis and the derivation of Einstein’s equation (see chapters
3,4,5,6,7) and
R. D’Inverno: “Introducing Einstein Relativity”, Oxford University Press, 1992
for additional discussions on the classical tests, the Schwarzschild black hole solution, and
gravitational waves.

These notes will be used to describe details or fill gaps in the presentation, if necessary,
leaving the above textbooks as the main source for studying general relativity.

2 The principle of equivalence of gravitation and inertia

This is described in Chapter 3 of [1].

3 The principle of general covariance and tensor analysis

This is described in Chapter 4 of [1].

4 Effects of gravitation

This is described in Chapter 5 of [1].

5 Curvature

This is described in Chapter 6 of [1].
In class, we used slightly different conventions. They are as follows.
Given the metric gµν(x), interpreted as the potential of gravitational forces, it defines in-

variant lenghts on spacetime by
ds2 = gµν(x)dxµdxν . (1)

In particular, the squared proper time of an object travelling for an infinitesimal distance dxµ

in spacetime is given by dτ 2 = −gµν(x)dxµdxν . The metric is a tensor with transformation
properties indicated by its index structure

g′µν(x
′) = gαβ(x)

∂xα

∂x′µ
∂xβ

∂x′ν
. (2)
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Derivatives of tensors are not tensors, so that it is useful to introduce the concept of covariant
derivative. It is defined by the property that acting on tensors it produces new tensors (with
an additional index, of course). The covariant derivative makes use of the affine connection Γλµν
constructed out of the metric (known as the Levi-Civita connection or Christoffel symbols)

Γλµν =
1

2
gλσ(∂µgνσ + ∂νgµσ − ∂σgµν) . (3)

Then, the covariant derivative of vectors is defined by

∇µV
ν = ∂µV

ν + ΓνµλV
λ (4)

∇µVν = ∂µVν − ΓλµνVλ (5)

and similarly for tensors (which will have a connection for each index).
Covariant derivatives do not commute. They may be used to define implicitly the Riemann

tensor Rµν
λ
ρ by

[∇µ,∇ν ]V
λ = Rµν

λ
ρV

ρ . (6)

Indeed, the left-hand side is a tensor, so must be the right-hand side, and in particular the
Riemann tensor Rµν

λ
ρ. The latter is manifestly antisymmetric under the exchange of the

indices µ, ν. A direct calculation shows that

Rµν
λ
ρ = ∂µΓλνρ − ∂νΓλµρ + ΓλµσΓσνρ − ΓλνσΓσµρ . (7)

A useful mnemonic for remembering this structure is to write

Rµν
λ
ρ = ∇̄µΓλνρ − (µ↔ ν) (8)

where ∇̄µ contains a connection for the upper indices only (in general, covariant derivatives are
defined for tensors only).

Algebraic properties of the Riemann tensor are best written lowering the upper index with
the metric, and are the following ones

Rµνλρ = Rλρµν (symmetry) (9)

Rµνλρ = −Rνµλρ = −Rµνρλ (antisymmetry) (10)

Rµνλρ +Rλµνρ +Rνλµρ = 0 (cyclicity) . (11)

A brute force way of proving them is to write them down explicitly in terms of the metric. The
additional tensors that can be constructed by index contraction are

Rµν = Rλµ
λν (Ricci tensor) (12)

R = gµνRµν (Ricci scalar or curvature scalar) (13)

as other contractions will not give rise to independent structures.
From (9) it follows that the Ricci tensor is symmetric

Rµν = Rνµ . (14)

One can compute the number of independent components CD of the Riemann tensor in
arbitrary dimensions D. They are given by

CD =
1

2

(1

2
D(D − 1)

)(1

2
D(D − 1) + 1

)
− D(D − 1)(D − 2(D − 3)

4!

=
1

12
D2(D2 − 1) (15)

with a few values given in the following table
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D D4 CD

1 1 0
2 16 1
3 81 6
4 256 20
5 625 50

5.1 Bianchi identities

The Riemann tensors satisfies the following differential Bianchi identities

∇µRνλαβ +∇νRλµαβ +∇λRµναβ = 0 . (16)

The ciclic sum of the first three indices makes the sum totally antisymmetric in those indices.
One may contract the Bianchi identities on the indices (ν, α) (i.e. multiplying by gνα) to

find
∇µRλβ +∇αRλµαβ −∇λRµβ = 0 (17)

and contracting once more the indices (λ, β) one finds

∇µR− 2∇αRµα = 0 → ∇µ
(
Rµν −

1

2
gµνR

)
= 0 . (18)

It is customary to define the Einstein tensor Gµν by

Gµν = Rµν −
1

2
gµνR (19)

which then is covariantly conserved, i.e. ∇µGµν = 0.

Exercizes
These exercises help in proving some of the symmetry properties of the Riemann tensor.

Ex.1 Recalling that the metric is covariantly constant (∇µgαβ = 0) use [∇µ,∇ν ]gαβ = 0 to prove
the antisymmetry in the last two indices of the Riemann tensor, Rµναβ = −Rµνβα.

Ex. 2 Rewriting the Bianchi identities for electromagnetism using covariant derivatives, show
the cyclic property of the Riemann tensor.

Ex. 3 From the Jacobi identity valid for arbitrary operators A,B,C

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

(a consequence of the associativity of the multiplication of operators), consider the case with
(A,B,C) = (∇µ,∇ν ,∇λ) acting on a vector field V ρ, i.e.(

[∇µ, [∇ν ,∇λ]] + [∇ν , [∇λ,∇µ]] + [∇λ, [∇µ,∇ν ]]
)
V ρ = 0

and prove the Bianchi identities.
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6 Einstein’s equations of general relativity

This is described in Chapter 7 of [1].
We now come to the Einstein’s field equations, writing out the main equations in our

notations.
Einstein’s equations (the equivalent for the metric of Maxwell’s equations for the potential

Aµ) can be identified by using the general covariant principle, which embodies the principle of
equivalence. We know that any gravitational field can be made sufficiently small in a small
region by using a local inertial frame (that in fact makes the gravitational field vanish at a
point).

A weak and static field due to non-relativistic matter with mass density ρ(x) is described
by a newtonian potential φ, embedded in the component g00 of the metric as

∇2φ = 4πGρ (20)

g00 ≈ −(1 + 2φ) (21)

where G = 6.67 10−11Nm2/Kg2 is the Newton gravitational constant. For example, a pointlike
particle of mass M at rest has a mass density

ρ(x) = Mδ3(~x) (22)

and it gives rise to a potential that satisfies the equation

∇2φ = 4πGMδ3(~x) → φ(x) = −GM
r

. (23)

In special relativity mass and energy are equivalent, so that one can take ρ(x) as the energy
density, which appears as the T00 component of the energy-momentum tensor (also named stress
tensor) of the matter system, and rewrite the equation for the gravitational potential as

∇2g00 = −8πGT00 . (24)

Then, special relativity implies that there must be a tensor Gαβ (tensor under Lorentz trans-
formations) with component G00 = −∇2g00 (the minus sign is conventional) that can be con-
structed with second derivatives of the metric, so that the Lorentz invariant form of (24)
becomes

Gαβ = 8πGTαβ (25)

where the complete energy-momentum tensor Tαβ appears on the right-hand side. So far, this
is just as a consequence of special relativity. Finally, general relativity is obtained by searching
for a general covariant extension that must take the general covariant form

Gµν = 8πGTµν . (26)

The conservation of Tαβ, namely ∂αTαβ = 0 is covariantized to ∇µTµν = 0, so that by consis-
tency also Gµν must be covariantly conserved, i.e. ∇µGµν . The weak and static limit identifies
it uniquely with the Einstein tensor.

These considerations lead to the Einstein’s equations

Rµν −
1

2
gµνR = 8πGTµν (27)

4



which are generally covariant field equations for the metric gµν . The tensor Tµν is the energy-
momentum tensor of the matter that gravitates. An equivalent way of writing these equations
is to first take the trace (by multiplying with gµν) to find (in four spacetime dimensions)

R− 2R = 8πGT µν → R = −8πGT µµ

so that Einstein’s equations take the form

Rµν = 8πG
(
Tµν −

1

2
gµνT

λ
λ

)
. (28)

In vacuum, these equations reduce to
Rµν = 0 . (29)

An additional term with a dimensionful coupling constant Λ with positive mass dimensions,
the so-called cosmological constant, can be added to the equations

Rµν −
1

2
gµνR + Λgµν = 8πGTµν . (30)

Originally introduced and then rejected by Einstein, nowadays it allows to describe the presence
of dark energy in the universe.

Finally, reintroducing by dimensional analysis the speed of light c, Einstein’s equations takes
the form

Rµν −
1

2
gµνR + Λgµν =

8πG

c4
Tµν (31)

however, we will continue to use units with c = 1.

7 Harmonic gauge

The gauge symmetry associated to the arbitrary change of coordinates can be used to simplify
the analysis of Einstein’s equations.

The gauge symmetry implies that given a solution gµν(x), also g′µν(x) will be a solution if
the functions in g′µν are obtained by a change of coordinates

g′µν(x
′) = gαβ(x)

∂xα

∂x′µ
∂xβ

∂x′ν
. (32)

Infinitesimally, under the change of coordinates x′µ = xµ − ξµ(x), the metric varies as

δgµν(x) ≡ g′µν(x)− gµν(x) = ξα∂αgµν + (∂µξ
α)gαν + (∂νξ

α)gµα

= ∇µξν +∇νξµ
(33)

The previuos gauge symmetries can be fixed by requiring the harmonic gauge (or De Donder
gauge) conditions

Γµ ≡ gνλΓµνλ = 0 ↔ ∂ν(
√
ggνµ) = 0 (34)

These four conditions specify a gauge in which the coordinates are harmonic functions,
just like the cartesian coordinates of flat spacetime, and are sometimes called quasi-cartesian
coordinates.

5



8 Linearized Einstein’s equations

To study the Einstein’s equations in a linearized apporximation around flat spacetime, one sets
the metric as

gµν(x) = ηµν + hµν(x) (35)

and considers |hµν(x)| � 1. Then one may raise and lower indices with the Minkowski metric

hµν = ηµαηνβhαβ (36)

and define for simplicity the “trace” of hµν

h = ηµνhµν . (37)

Then, one may compute at the linear order in hµν

gµν(x) = ηµν − hµν(x) , g = | det gµν | = 1 + h ,
√
g = 1 +

1

2
h (38)

The Christoffel symbols linearize as

Γρµν =
1

2
ηρσ(∂µhνσ + ∂νhµσ − ∂σhµν) =

1

2
(∂µhν

ρ + ∂νhµ
ρ − ∂ρhµν) , (39)

the Riemann tensor as

Rµν
ρ
σ = ∂µΓρνσ − ∂νΓρµσ + .... =

1

2
∂σ(∂µhν

ρ − ∂νhµρ)−
1

2
∂ρ(∂µhνσ − ∂νhµσ) (40)

and the Ricci tensor

Rνσ = Rµν
µ
σ =

1

2
(∂ν∂

µhσµ + ∂σ∂
µhνµ − ∂ν∂σh−�hνσ) (41)

where now � = ∂µ∂µ = ηµν∂µ∂ν .
Then, Einstein’s equations in vacuum take the linearized form

�hµν + ∂µ∂νh− ∂µ∂σhσν − ∂ν∂σhσµ = 0 . (42)

One can verify that they are gauge invariant under the linearized gauge symmetry

δhµν = ∂µξν + ∂νξµ (43)

where the four components of ξµ are arbitrary functions. These symmetries can be used to
set four gauge-fixing conditions, that may be take to be the linearzied harmonic (De Donder)
gauge

∂σhσµ =
1

2
∂µh (44)

which simplify Einstein’s equations to

�hµν = 0 (45)

which evidently support plane waves solutions (gravitational waves).
It can be shown that only two independent polarizations of the gravitational waves can

exist, just like the electromagnetic waves.
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8.1 Electromagnetic waves and physical polarizations

Let us first review the case of the electromagnetic waves. The introduction of the four-potential
Aµ solves half of the Maxwell equations. The remaining ones in vacuum take the form

∂µFµν = ∂µ(∂µAν − ∂νAµ) = 0 (46)

and are gauge invariant under
δAµ = ∂µθ (47)

with θ an arbitrary function of spacetime. The gauge freedom allows to set the Lorenz gauge
∂µAµ = 0, and in this gauge the equations simplify to

�Aµ = 0

∂µAµ = 0 .
(48)

Plane wave solution are found using the ansatz (up to an overall normalization) by setting

Aµ(x) = εµ(k) eik·x + c.c. (49)

where εµ(k) is an arbitrary polarization depending on the wave vector kµ, and the exponent

contains the Lorentz invariant phase k · x = kµx
µ = ηµνk

µxν = −k0x0 + ~k · ~x. The notation
c.c. stands for complex conjugation, and makes the solution real. Plugging this ansatz into the
equations (48), one finds a solution if

kµkµ = 0 , kµεµ(k) = 0 . (50)

Thus, only three polarizations εµ(k) are possible. However, one of these polarizations, the one
with εµ(k) ∼ kµ is not physical, and can be removed by a gauge transformation (it does not carry
electric and magnetic fields, and thus no energy and momentum). The gauge transformations
that removes it has the form in (47), but with θ of the form

θ(x) ∼ eik·x (51)

which satisfies �θ(x) = 0, and thus does not ruin the Lorenz gauge condition. The gauge
transformation becomes

δAµ = ∂µθ ∼ ikµ e
ik·x (52)

and shows that the polarization εµ(k) ∼ kµ is not physical, as can be removed by an appropriate
gauge transformation. Thus, only two physical polarizations remain.

Let us exemplify this considering the motion along the z axis. We can take

kµ = (k0, ~k) = (ω, 0, 0, ω) (53)

which solves kµkµ = 0 and producing the phase eik·x = eiω(z−t). The two expected polarizations
can be taken as

ε1µ = (0, 1, 0, 0)

ε2µ = (0, 0, 1, 0)
(54)

which indeed satisfy
kµεiµ = 0 , εiµ 6= αkµ . (55)
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Considering for example the solution with ε1µ, plugging it into (49), and multiplying with an
arbitrary amplitude A0 one finds

~A = A0 cos(ωz − ωt) x̂

~E = −∂
~A

∂t
= E0 sin(ωz − ωt) x̂

~B = ~∇× ~A = B0 sin(ωz − ωt) ŷ

(56)

where E0 = B0 = ωA0, and x̂, ŷ, ẑ the usual unit vectors.
The above plane waves do not carry angular momentum. Plane waves carrying angular

momentum are obtained using the circular polarization defined by

ε±µ = ε1µ ± iε2µ . (57)

They are also said to correspond to the helicity h = ±1, as in a quantum interpretation they
are related to photons carrying angular momentum ±~ along the direction of motion (helicity),
and with a wavefunction of the form

Aµ(x) = ε±µ (k)eikνx
ν

= ε±µ (k)e
i
~pνx

ν

(58)

where pµ = ~kµ is the 4-momentum of the photon.

8.2 Gravitational waves and physical polarizations

We can now consider in a similar way the gravitational waves. We have seen that they satisfy
the equations

�hµν = 0

∂µhµν =
1

2
∂νh

(59)

with the second one describing the harmonic gauge. Plane wave solution can be found using
the ansatz (up to a normalization) by setting

hµν(x) = εµν(k) eik·x + c.c. (60)

where εµν is an arbitrary polarization tensor depending on the wave vector kµ, and the exponent

contains the Lorentz invariant phase k · x = kµx
µ = ηµνk

µxν = −k0x0 + ~k · ~x. The notation
c.c. stands for complex conjugation, and makes the solution real. Plugging this ansatz into the
equations (59), one finds a solution if

kµkµ = 0 , kµεµν(k) =
1

2
kνε

σ
σ . (61)

Thus, only 6 polarizations εµν(k) are possible. However, 4 of these polarizations, the ones with
εµν(k) ∼ kµεν(k) + kνεµ(k) for some εµ(k) are not physical, and can be removed by gauge
transformations. The latter have the form in (43), but with ξµ of the form

ξµ(x) ∼ εµ(k)eik·x (62)

which satisfies �ξµ(x) = 0, and thus does not ruin the harmonic gauge condition (43). The
gauge transformation becomes

δhµν = ∂µξν + ∂νξµ ∼ i(kµεν(k) + kµεν(k)) eik·x (63)

8



and shows that these types of polarizations are not physical, and can be removed by an appro-
priate gauge transformations. Thus, only two physical polarizations remain.

Let us exemplify this again by considering the motion along the z axis. We can take

kµ = (k0, ~k) = (ω, 0, 0, ω) (64)

which solves kµkµ = 0 and gives the phase eik·x = eiω(z−t). The two expected polarizations can
be taken as (using the previous em polarizations)

ε⊕µν = ε1µε
1
ν − ε2µε2ν

ε⊗µν = ε1µε
2
ν + ε2µε

1
ν

(65)

which indeed satisfy
kµεiµν = 0 , εiµν 6= α(kµεν + kνεµ) (66)

for i = (⊕,⊗). Considering for example the solution with ε⊕µν , plugging it into (60), and
multiplying with an arbitrary amplitude h0 one finds

hµν(z − t) = h0 cos(ωz − ωt) ε⊕µν (67)

which inserted into the linearized metric gµν(x) give the line element

ds2 = (ηµµ + hµν(z − t))dxµdxν

= −dt2 + (1 + h11(z − t))dx2 + (1− h11(z − t))dy2 + dz2
(68)

which is interpretable as deforming periodically invariant lengths as in the figure 1 (from [3]).

Figure 1: Polarization ε⊕µν

The polarization ε⊗µν , does much of the same, but rotated by 45 degrees, see fig. 2

Figure 2: Polarization ε⊗µν

9 The Schwarzschild solution

Finding exact solutions of the Einstein’s field equations is very difficult. One strategy is to use
conjectured symmetries of possible solutions, and use these symmetries to restrict the functional
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form of the metric that is expected to solve the equations. This simplifies Einstein’s equations,
which then become more tractable and hopefully solvable.

This strategy is the one adopted for finding the Schwarzschild solution. The Schwarzschild
metric is obtained by asking for a static and isotropic solution of the Einstein equations in
vacuum, a situation that is realized outside a source that is supposed to be spherical symmetric
and static. To implement the required symmetries, time translation and rotational invariance,
one assumes the existence of coordinates xµ = (t, ~x) such that the metric takes the form

ds2 = −F (r) dt2 + 2E(r) dt ~x · ~dx+D(r) (~x · d~x)2 + C(r) d~x · d~x (69)

where r =
√
~x · ~x. This is the most general ansatz consistent with the symmetries. The form

of the metric can be further simplified by making changes of coordinates. First of all, one may
pass to spherical coordinates (r, θ, φ) for ~x, and using ~x · ~dx = rdr one rewrites

ds2 = −F (r) dt2 + 2E(r)r dtdr +D(r)r2dr2 + C(r) [dr2 + r2dθ2 + r2 sin2 θ dφ2]. (70)

Then, one may redefine the time by

t→ t′ = t+ Φ(r) (71)

so that

dt′ = dt+
dΦ(r)

dr
dr (72)

and the first two terms inside ds2 become

ds2 = −F (r)
(
dt′ − dΦ(r)

dr
dr
)2

+ 2E(r)r
(
dt′ − dΦ(r)

dr
dr
)
dr + . . . (73)

that rearranges to

ds2 = −F (r) dt′2+2
[
rE(r)+F (r)

dΦ(r)

dr

]
dt′dr−

[
F (r)

(dΦ(r)

dr

)2
+2rE(r)

dΦ(r)

dr

]
dr2+. . . (74)

Now one can fix the function Φ(r) to satisfy

dΦ(r)

dr
= −rE(r)

F (r)
(75)

so that the mixed term dt′dr vanishes, and the remaining part takes the form

ds2 = −F (r) dt′2 +G(r)dr2 + C(r) [dr2 + r2dθ2 + r2 sin2 θ dφ2] (76)

where

G(r) = r2
(
D(r) +

E2(r)

F (r)

)
. (77)

Now one could redefine the radius r → r′ by setting

r′ 2 = C(r)r2 (78)

so that one gets the so-called standard form of the metric

ds2 = −B(r′) dt′ 2 + A(r′)dr′ 2 + r′ 2(dθ2 + sin2 θ dφ2) (79)
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with
B(r′) = F (r)

A(r′) =
(

1 +
G(r)

C(r)

)(
1 +

r

2C(r)

dC(r)

dr

)−2
.

(80)

Dropping the primes one finds the static and isotropic metric in the standard form

ds2 = −B(r) dt2 + A(r)dr2 + r2(dθ2 + sin2 θ dφ2) . (81)

It is put into Einstein’s equations, which are solved to produce the Schwarzschild solution

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1
dr2 + r2(dθ2 + sin2 θ dφ2) . (82)

The same solution is obtained by relaxing the hypothesis of time invariance (staticity). A
more general ansatz for the solution still lead to the same Schwarzschild metric. This is captured
by Birkhoff’s theorem, that states that any spherically symmetric solution of the vacuum field
equations must be static and asymptotically flat. This theorem guarantees that the assumption
of staticity may be dropped, and still the exterior solution for the spacetime metric outside of
a spherical, nonrotating, gravitating body must be given by the Schwarzschild metric.

10 Black holes

The Schwarzschild solution indicates the existence of an event horizon and leads to the concept
of a black hole. The recommended treatment is the one presented in [3], see chapter 8.
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