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Notes on worldlines and vertex operators
Fiorenzo Bastianelli

To get intuition on the string theory construction of vertex operators, let us look at the
particle analogy.

The relativistic scalar particle has an action proportional to the length of the worldline.
Using the particle coordinates xµ(τ), defining the embedding of the wordline in flat spacetime
with an arbitrary parameter τ , one writes the action in natural units as

S[xµ] = −m
∫
|ds| = −m

∫
dτ
√
−ẋµẋµ . (1)

Introducing an einbein e, which defines the intrinsic geometry of the worldline, one gets a better
description in terms of a more general action

SMink[x, e] =

∫ 1

0

dτ
[1

2
e−1ẋµẋνηµν −

1

2
em2

]
(2)

that can be Wick rotated (τ → −iτ , x0 → −ix4, iSMink → −S) to find the euclidean action

S[x, e] =

∫ 1

0

dτ
[1

2
e−1ẋµẋνδµν +

1

2
em2

]
. (3)

This action can be path integrated to get the propagator of the particle.
Considering the boundary conditions xµ(0) = xµi and xµ(1) = xµf , one finds the particle

propagator by computing the path integral on the interval I = [0, 1] (i.e. τ ∈ [0, 1])

G(xi, xf ) =

∫
I

DxDe

vol(Gauge)
e−S[x,e] (4)

where the division by the (infinite) volume of the gauge group (reparametrizations of the world-
line) is necessary in order not to count the same physical configuration infinitely many times.

To proceed with the calculation, it is necessary to “fix the gauge”. Let us briefly review the
main points. The gauge symmetry allows to set the gauge-fixing condition e(τ) = 2T , with T
being a suitable constant. The value of T is determined by the length of the worldline, measured
with the intrinsic metric defined by the einbein. This length is given by

∫ 1

0
dτe(τ) = 2T and is

gauge invariant (invariant under redefinition of the parameter τ). Then, the integral over all
possible einbeins e(τ) reduces to an integral over all possible lengths, and thus over T . The
amplitude therefore takes the form

G(xi, xf ) =

∫ ∞
0

dT e−m
2T

∫
I

Dxe−S[x]

S[x] =

∫ 1

0

dτ
1

4T
ẋµẋµ . (5)
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Aside from the integral over T , the remaining path integral is identical to that of a free non-
relativistic particle with an appropriate mass, whose solution is well-known. The latter can be
expressed in terms of its Fourier transform∫

I

Dxe−S[x] =
1

(4πT )
D
2

e−
(xf−xi)

2

4T =

∫
dDp

(2π)D
eipµ(x

µ
f−x

µ
i )e−p

2T (6)

so that one finds

G(xi, xf ) =

∫ ∞
0

dT

∫
dDp

(2π)D
eipµ(x

µ
f−x

µ
i )e−(p

2+m2)T =

∫
dDp

(2π)D
eipµ(x

µ
f−x

µ
i )

1

p2 +m2
. (7)

With the inverse Wick rotation (x4 → ix0 and p4 → −ip0), one returns to Minkowski
space and obtains the propagator with the correct Feynman-Stückelberg prescription, i.e. the
two-point function of the Klein-Gordon field φ(x)

〈Ω|T φ̂(xf )φ̂
†(xi)|Ω〉 =

∫
dDp

(2π)D
eipµ(x

µ
f−x

µ
i )

(−i)
p2 +m2 − iε

(8)

where |Ω〉 is the vacuum state of the quantum field theory. This result exemplifies how the
method of first quantization of relativistic particles reproduces results in quantum field theory.
The purpose of the latter is to formalize and extend the relativistic quantum mechanics to an
arbitrary number of identical particles and give it a nonperturbative definition.

Note the role of the modulus T , the so-called Fock-Schwinger proper time, that emerges by
quantizing the geometry of the worldline. In a similar way, moduli emerge when quantizing the
worldsheets of the string (Riemann surfaces).

Vertex operators

One can extend the action (3) by considering a nontrival metric gµν(x) to represent the
coupling of the particle to external gravity

S[x, e] =

∫ 1

0

dτ
[1

2
e−1ẋµẋνgµν(x) +

1

2
em2)

]
. (9)

Considering a small deformation of the flat metric by a plane wave, one can write

gµν(x) = δµν + κεµνe
ik·x (10)

and keep the smallest order term in the coupling constant κ. One finds that the path integral
leads to ∫ ∞

0

dT e−m
2T

∫
DxVgrav[x] e−S[x] (11)

where S[x] is the action in (5) and Vgrav is the vertex operator that describe the emission/absorption
of a graviton of momentum kµ and polarization εµν by the particle

Vgrav[x] = − κ

4T

∫ 1

0

dτ εµν ẋ
µ(τ)ẋν(τ)eik·x(τ) . (12)
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In a similar way, considering more general couplings to tensor/vector/scalar potentials de-
noted by gµν(x), Aµ(x), φ(x), (i.e. spin 2/1/0 external particles), one finds the general nonlinear
sigma model

S[xµ, e] =

∫
dτ
[1

2
e−1gµν(x)ẋµẋν − iqAµ(x)ẋµ + e

(1

2
m2 + gφ(x)

)]
. (13)

where q is the electric charge and g a scalar charge. Note that it is reparametrization invariant
and can be gauge-fixed as before. Again, plane wave deformations of the background potentials
(gµν , Aµ, φ) around empty flat space (δµν , 0, 0)

gµν = δµν + κεµνe
ik·x

Aµ = εµe
ik·x

φ = eik·x
(14)

lead to the vertex operators for emission/absorption of particles of spin 2, 1, and 0

Vgrav[x] = − κ

4T

∫ 1

0

dτ εµν ẋ
µ(τ)ẋν(τ)eik·x(τ) .

Vph[x] = iq

∫ 1

0

dτ εµ ẋ
µ(τ)eik·x(τ) .

Vscal[x] = g

∫ 1

0

dτ eik·x(τ) .

(15)

The particle case furnishes intuition and guidance for the introduction of vertex operators
in string theory.

Topology of the worldline and one-loop amplitudes

Let us review also the path integral on the circle, that leads to one-loop amplitudes, and its
relation to the Schwinger-DeWitt heat kernel method.

For worldlines with the topology of the circle S1, the path integral computes one-loop
amplitudes

Z =

∫
S1

DxDe

vol(Gauge)
e−S[x,e]

=

∫ ∞
0

dT

T

∫
PBC

Dxe−S[x,e=2T ]

=

∫ ∞
0

dT

T
Tr
[
e−HT

]
= −Tr lnH = − ln(DetH) = ln(Det−1H)

= ln

∫
Dφ∗Dφe−

∫
dDxφ∗Hφ

(16)

where the path integral on the circle S1 is gauge-fixed by setting e(τ) = 2T (second line), with
the modulus T acquiring the non trivial measure 1

T
on the circle. The path integral on the circle

is obtained by choosing periodic boundary conditions (PBC) in τ . It computes a trace in the
Hilbert space of the first quantized theory. The modulus T is recognized as the Fock-Schwinger
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proper time and leads to a well-known representation of the logarithm1 (third line). Finally,
the Hamiltonian of the free relativistic particle is H = p2 + m2 = −� + m2 and is recognized
as the Klein-Gordon operator of the free scalar QFT, whose gaussian path integral leads to the
one-loop effective action.

Once again, we observe how first quantization serves as a framework for representing quan-
tities in Quantum Field Theory (QFT), such as the one-loop effective action.

Schwinger [1] pioneered the representation of the one-loop effective action in terms of the
proper time already in 1951, initially for particles interacting with external electromagnetic
fields. Later, DeWitt extended this representation to include curved spaces, accounting for
coupling to external gravity.

The introduction of proper time proved crucial in providing a useful representation for the
logarithm, as well as for the inverse kinetic term in the propagator. Initially conceived as a
mathematical tool to derive expressions related to the quantum mechanical transition amplitude
e−HT within a “fictitious” quantum mechanical model with hamiltonian H, it eventually became
apparent that this quantum mechanical model corresponded to the first quantized description of
the particle associated with the quantum field. The proper time emerges then as a consequence
of gauge-fixing the einbein e(τ).

Going back to the path integral in (16), one can extend it by introducing couplings to
external backgrounds and deduce the vertex operators that define interactions with external
particles of fixed momenta, as in the case of the propagator.

References

[1] J. S. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82 (1951),
664-679 doi:10.1103/PhysRev.82.664

1Consider

ln
a

b
= −

∫ ∞
0

dT

T
(e−aT − e−bT ) .

Both sides have the same derivative in a and have the same value for a = b, so they define the same function.
In the Schwinger application to operators, one drops an infinite constant (the term with b), which is however
taken care of by renomalization.
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