Quantum Spin Chains, Loop Models and Alternating Sign Matrices

Jean-Bernard Zuber

Firenze, Settembre 2003

Recent remarkable observations by Razumov & Stroganov, and Batchelor, de Gier & Nienhuis and others

Main idea:

The components of the ground state of some quantum systems are non negative integers. Combinatorial interpretation?

Plan

I A review of the main characters

XXZ Chain \leftrightarrow O(1) Dense Loop Model

Temperley-Lieb Algebra

Alternating Sign Matrices ↔ Fully Packed Loops

- II Some new conjectures
- **III** Further Directions

A review of the main characters

XXZ antiferromagnetic chain

$$\mathcal{H} = -\frac{1}{2} \sum_{j=1}^{L} \sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z + \text{boundary terms}$$

For $\Delta = -\frac{1}{2}$, periodic chain and L odd,

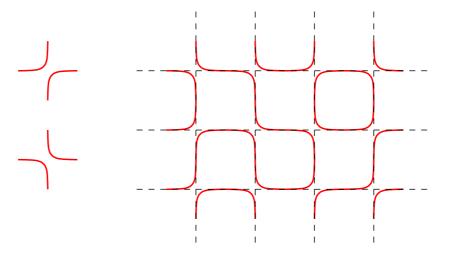
Razumov & Stroganov : ground state $|\Psi\rangle$ has energy = -3L/4 and ... components of $|\Psi\rangle$ (in basis $|\sigma_1^z \cdots \sigma_L^z\rangle$) are integers!

What are these integers?

Hamiltonian in terms of the Temperley-Lieb Algebra [Pasquier-Saleur 89] Look at a related model...

Dense O(1) Loop Model

Non intersecting closed loops on a square lattice, all edges occupied, each closed loop: weight 1, with suitable b.c.



On a "time" slice: states described by "connectivity patterns"

Hamiltonian (from transfer matrix) : Temperley-Lieb algebra $\mathcal{H} = -\sum e_i$

Temperley-Lieb Algebra

Generators e_i , $i = 1, \dots, p$

$$e_i^2 = \bigcirc = e_i \qquad e_i \quad e_{i+1} e_i = \bigcirc = e_i$$

act on connectivity patterns

Alternating Sign Matrices (ASM)

Square $n \times n$ matrices with entries 0, +1, -1, such that

- signs +1 and -1 alternate along each row and each column
- the sum is +1 along each row and each column

Example There are seven 3×3 ASM:

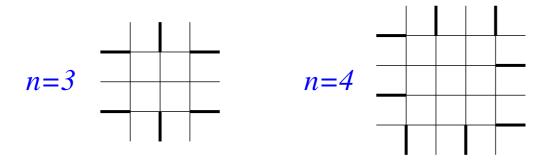
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Number of ASM of size *n*

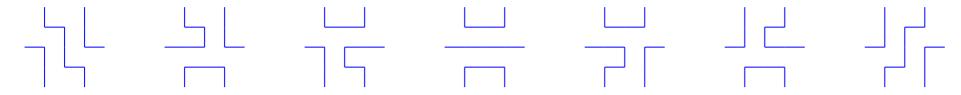
$$A_n = \prod_{j=1}^n \frac{(3j-2)!}{(n+j-1)!} = 1, 2, 7, 42, 429, \dots$$

Fully Packed Loops (FPL)

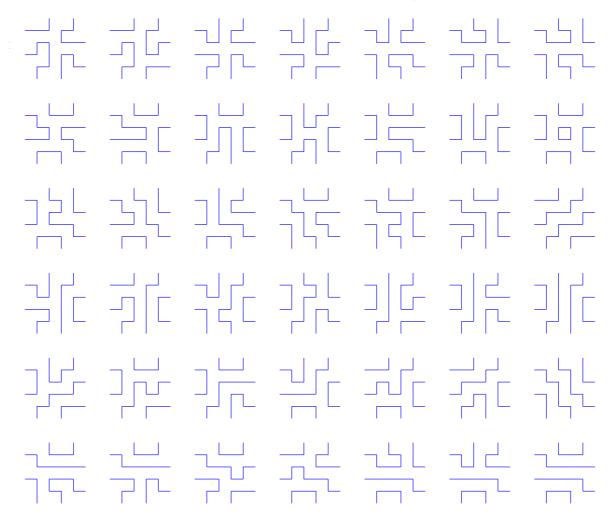
On a $n \times n$ grid, with 4n external links, sets of disconnected paths passing through each of the n^2 vertices and exiting through every second of the external links



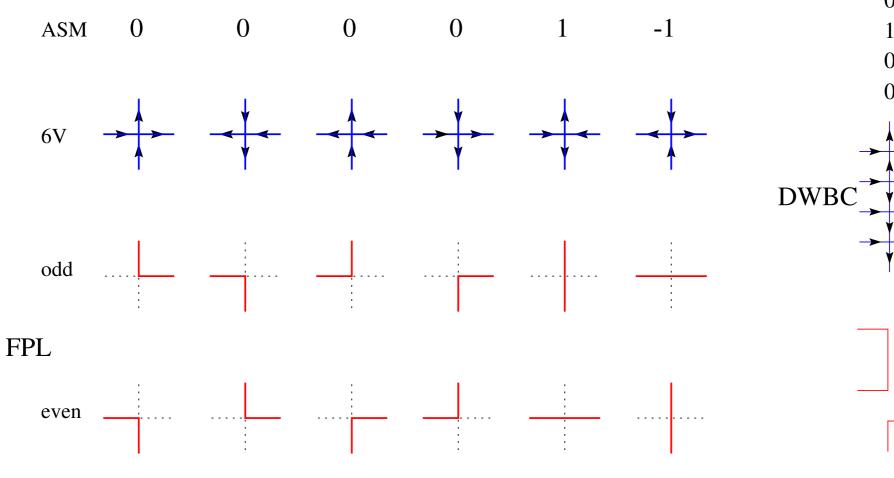
There are 7 FPL on a 3×3 grid

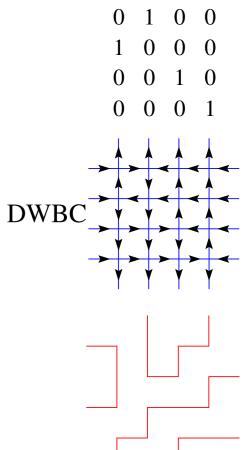


The 42 FPL on a 4×4 grid



$ASM \leftrightarrow 6 Vertex \leftrightarrow FPL$





For a given size n, FPL configurations fall into Connectivity Classes (or "link patterns") π of their external links.

There are $C_n = \frac{(2n)!}{(n+1)!n!}$ (Catalan number)
distinct link
patterns π .
For example,
for n = 4,
14 classes

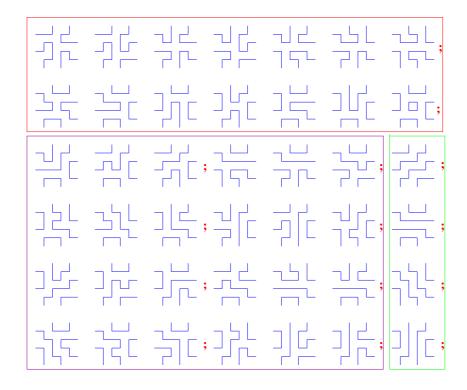
We want the numbers $A_n(\pi)$ of FPL configurations pertaining to π .

An unexpected dihedral symmetry of the $A_n(\pi)$

Theorem [Wieland 2000]

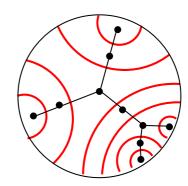
If π and π' are obtained from one another by $\sigma \in D_n$, the dihedral group, then $A_n(\pi) = A_n(\pi')$.

For n = 4, 3 independent $A_4(\pi)$



How many independent $A_n(\pi)$? i.e. how many orbits under the dihedral group?

Dual of a link pattern π is a Planar Projective Tree



Generating function of the numbers of PPTs computed by Stockmeyer

$$T(x) = x + x^2 + 2x^3 + 3x^4 + 6x^5 + 12x^6 + 27x^7 + 65x^8 + 175x^9 + 490x^{10} + 1473x^{11} + 4588x^{12} + \cdots$$

Reduced Hamiltonian on these orbits ...

Razumov-Stroganov conjecture

Periodic boundary conditions, even number of sites

The Perron-Frobenius eigenvector of $\mathcal{H} = \sum_{i=1}^{2n} e_i$ is

$$|\Psi\rangle = \sum_{a} A_n(\pi_a) |\pi_a\rangle$$
 : $\mathcal{H}|\Psi\rangle = 2n|\Psi\rangle$

i.e. its components are the $A_n(\pi)$ (with proper normalization) [R&S 2001]

Other types of b.c. on TLA \leftrightarrow different symmetry classes of ASM/FPL

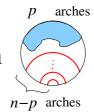
- * periodic, odd number of sites : connection with half turn symm.

 ASM/FPL
- * open, even number of sites: connection with vertically symm. ASM/FPL [Razumov-Stroganov 2001; Pearce, de Gier & Rittenberg 2001, ..., Mitra et al. to appear 2003]

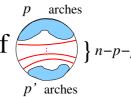
Some (mostly new) formulae

Beware! everything is just guessed!! from the data of Periodic (IC: "identified connectivities") TLA Hamiltonian, up to L = 2n = 22. Three types of results

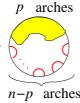
- Explicit formulae for simple link patterns of the form



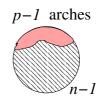
- General form and Asymptotic behavior for large n of

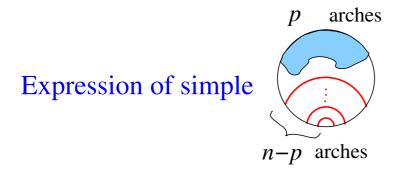


- Explicit formulae for



and relations with





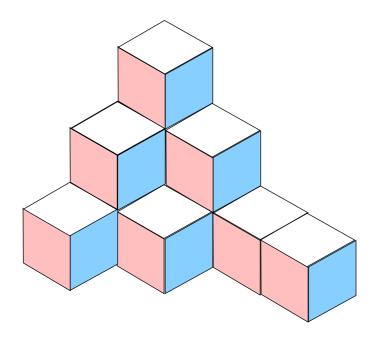
Recall that
$$= 1$$

Introduce the "superfactorial" $m! := \prod_{r=1}^{m} r!$, (-1)! = 0! = 1.

$$\frac{q}{\left(p+q+r-1\right)!(p-1)!(q-1)!(r-1)!} = \frac{(p+q+r-1)!(p-1)!(q-1)!(r-1)!}{(p+q-1)!(q+r-1)!(r+p-1)!} \quad p,q,r,\geq 0$$

Unexpectedly, this is also the number of plane partitions in a box $p \times q \times r$ (MacMahon formula)

$$\prod_{i=1}^{p} \prod_{j=1}^{q} \prod_{k=1}^{r} \frac{i+j+k-1}{i+j+k-2} .$$



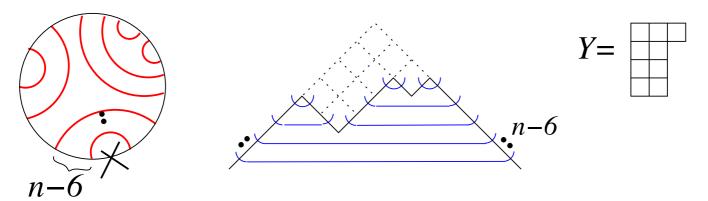
Unfortunately, formulae for more complicated link patterns are very messy! For example

$$\frac{q}{(q-1)!(r-1)!} = \frac{(q-1)!(r-1)!}{(q+r-1)!} \frac{p!(p+q+r)!(p+q)!(p+r)!}{(p+q+1)!(p+r+1)!} \times [p^3+2p^2(q+r+1)+p(q^2+qr+r^2+3(q+r)+1)+q(q+1)+r(r+1)]$$

$$= \frac{(q-1)!(r-1)!}{2(q+r-1)!} \frac{(p+1)!(p+q+r+1)!}{(p+q+3)!(p+r+3)!} \times (p+q+2)!(p+q+1)!(p+r+3)! \times (p+q+2)!(p+q+1)!(p+r+3)!(p+r)! \times [p^5 + p^4(7+4q+4r) + p^3(17+22q+6q^2+24r+10qr+6r^2) + p^2(17+40q+24q^2+4q^3+46r+42qr+8q^2r+30r^2+8qr^2+4r^3) + p(6+28q+29q^2+10q^3+q^4+32r+49qr+17q^2r+2q^3r+41r^2+23qr^2+3q^2r^2+16r^3+2qr^3+r^4) + 6q+11q^2+6q^3+q^4+6r+13qr+3q^2r+15r^2+15qr^2+3q^2r^2+12r^3+2qr^3+3r^4]$$

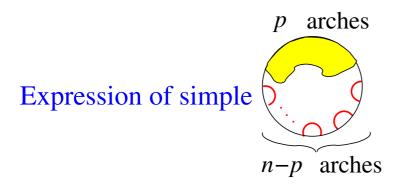
Is there some pattern?...

Represent an arch system by a Dyck path or by the complementary Young tableau:

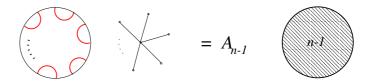


Conjecture $A_n(\pi) = \frac{1}{|Y|!} P_Y(n)$, P_Y polynomial of degree |Y| with coeffts in \mathbb{Z} and for n large $A_n(\pi) \approx \frac{\dim Y}{|Y|!} n^{|Y|}$

Consistent with eigenvector equation $\sum_{i} e_{i} |\Psi\rangle = 2n |\Psi\rangle$ [P. Di Francesco]



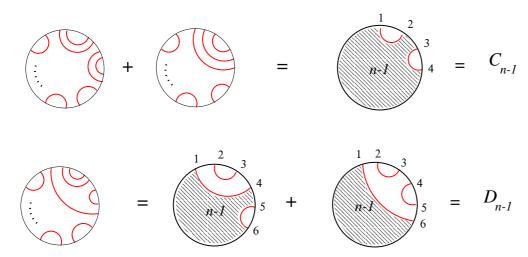
Batchelor, de Gier, Nienhuis noticed that



$$A_{n,p} = \frac{P_{p(p+1)}(n^2)}{\prod_{\ell=1}^{p} (4n^2 - (2\ell - 1)^2)^{p+1-\ell}} A_n,$$

for example, $A_{n,1} = \frac{3}{2} \frac{n^2 + 1}{4n^2 - 1}$ [Wilson], $A_{n,2}, A_{n,3}$ also known.

But also



Expression of C_n , D_n also known: again rational fractions in n^2

Lessons and questions:

- (-) wide set of "recursion formulae"
- (-) what is their origin?
- (-) significance of their pattern (evenness in n, etc)?
- (-) simplifying role of periodic b.c. (compare [Mitra, Nienhuis, de Gier & Batchelor])

Further Directions

Other types of b.c., other quantities [Mitra, Nienhuis, de Gier & Batchelor]

Conformal limit: Logarithmic CFT?...[Read & Saleur 2001, Pearce,

Rittenberg & de Gier 2001, Pearce & Z 200x]

A Quiz!

Who wrote

Florence est ville et fleur et femme, elle est ville-fleur et ville-femme et fille-fleur tout à la fois.