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Measurement for the detection of weak amounts of absorbtion

- Principle of operation of differential measurement

- Beating the SQL by using sub-shot noise correlation of twin beams

Question: can we also image a weak object using the same technique ?   

- Demonstration of quantum correlation in the spatial domain in the high gain 

regime of spontaneous parametric down-conversion (exp. of Como).

- Improvement of SNR with respect to the SQL, simulation of the experiment 

with realistic parameters 

- concluding remarks
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Differential measurement of a weak absorbtion coefficient
(a) classical source
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Differential measurement of weak absorbtion coefficient
(b) quantum source
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The improvement in SNR using the PDC source (with respect to the SQL) is

In the weak absorbtion limit
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The technique has been used with single-mode twin beams generated by an OPO:

Souto Ribeiro, Schwob, Maitre, Fabre, Opt. Lett. 22, 1893 (1997)   (2dB noise

reduction, for two-photon transition)

Jiangrui Gao et al., Opt.Lett. 23, 870 (1998) (4dB noise reduction)

Question: can we use the same technique to detect the spatial distribution of the

absorbtion coefficient αobj(x) , i.e the image of a weak object ?

- Yes, if we use multi-mode twin beams, e.g. as those generated by

spontaneous parametric down-conversion (PDC) - we need sub-shotnoise

correlation between small regions of the signal and idler cross-section,  i.e. 

quantum correlation in the spatial domain.

- No if the twin beams are single mode.



Ordinary (single(single--mode)mode) twin beams:  
photon number  correlated in time, but uncorrelated in spacebut uncorrelated in space

sub-shot noise
correlation

only with bucket detector

Spatially entangled (multi(multi--mode)mode) beams:  
photon numbers correlated in time and in the beam cross sections and in the beam cross sections 

sub-shot noise
Correlation

with local detection



Process of spontaneous parametric down-conversion
In the high gain regime (experiment of Como)

1 ps pump pulse
of frequency ωp

χ(2)

crystal

signal - idler
emission cones

BBO crystal - type II phase-matching

O. Jedrkiewicz et al., 

PRL 93, 243601(2004)

Far field pattern 
from a single pump pulse
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zoomed signal

Evidence of twin beam effect in the spatial domain
of high gain regime of PDC

zoomed idler

evident strong spatial correlation between the two 
symmetrical images

- pump beam waist ~ 1 mm  
- gain 10-1000 photon/pixel



spatial filter
+200 μm

low-band pass filter

polarizing
beamsplitter

type II BBO

rectangular
aperture
(4mm)

CCD

High quantum 
efficiency CCD

(η=89%) 

Selection of a portion of PDC 
fluorescence around collinear 
direction

Experimental set-up to measure
PUMP PULSE
λp= 352nm, τp=1ps O. Jedrkiewicz, Y..K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. 

Lugiato, and P. Di Trapani, Phys. Rev. Lett. 93, 243601 (2004).
O. Jedrkiewicz, E. Brambilla, M. Bache, A. Gatti, L. A. Lugiato, and P. Di 
Trapani, J. of Mod. Opt. 53, 575 (2006).
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Sub-shot-noise correlation up to                   ~ 20 photons corresponding to 100 ph. per 
mode (transverse size of the coherence areas in that regime about 2 pixels)
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measurement of sub-shot noise correlation
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Deterioration of signal-idler correlation with gain

(η1- η2)2<<1 in the experiment -> small contribution of the term αEnoise

unbalance due to different losses: suppose η1 ≠ η 2, with η 1 ≈ η 2
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Effect of the inacuracy xshift in the center of symmetry

Comparison between experimental data and numerical simulation
(xshift=3μm in the numerical)
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Transition from quantum to classical correlation:
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Numerical modelling of parametric down-conversion (any gain regime)

Starting point:propagation equation along the crystal for signal and idler envelope operators:
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Numerical simulation with diferent values of the pump pulse time
assuming xshift=6µm

By increasing τpump α M, the slope of σs-i  decreases
→ sub-shot noise correlation also for large photon number

τpump=15ps

(M ~15)
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Numerical simulation for the detection of a weak object obj(x)
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SNR as a function of the pump pulse time τpump (the gain/mode is kept constant).
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-The detection of weak images beating the SQL can be achieved

using multi-mode twin beams generated by spontaneous parametric

down-conversion.

A substantial gain in SNR can be obtained if:

1) a careful balance of the test and the reference beam is achieved

2) The excess noise in the two beam is as small as possible (e.g. by

considering long pump pulses)

CONCLUSIONS



Numerical modelling of parametric down-conversion (any gain regime)

Starting point:propagation equation along the crystal for signal and idler envelope operators:
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SNR as a function of the pump pulse time pump (the gain/mode is kept constant).

PDC source σs-i=0.4
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1000 2000 3000 4000 5000 6000 7000
0.0

0.5

1.0

1.5

2.0

2.5

3.0
0 2000 4000 6000 8000

SN
R

τp(ps)

〈N1'〉+〈N2〉

wpump=1500μm
η=0.75

55.1==
SQL

PDC

SNR
SNR

F



BBO type I
Shutter time 40ms 
Pumped at 400nm by a continuous diode laser





The generated pairs of signal and idler phase-conjugate modes propagate
at symmetrical angles with respect to the pump direction in order to fulfill 
the phase-matching constraints, and each pair of symmetrical spots charac-
terizing the far field represents a spatial replica.

No temporal statistics is made.

Statistical ensemble constituted 
only by spatial replicas.                

Averages are only SPATIAL
performed inside box (4000 
pix) for each single laser pulse  

Far field image of the selected portion of PDC fluorescence

Inserting the 10nm 
IF allows to 
locate on the CCD 
the collinear 
degeneracy point



Modelling parametric down-conversion (any gain regime)

Starting point:propagation equation along the crystal for signal and idler envelope operators:
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For symmetry reason we have
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Brambilla, Gatti, Bache and Lugiato,
Phys. Rev. A 69, 023802 (2004)
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•Finite size of the pump waist wP --> 
uncertainty in the propagation directions 
of twin photons 

• uncertainty in the 
transverse momentum  of  photon 1 from 
a measurement of the momentum of 
photon 2

•Perfect intensity correlation recovered for 
detection areas   larger than   
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Differential measurement of weak absorbtion coefficient
(b) quantum source
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