Phases and Entanglement in Neutron Interference Experiments

S. Filipp, J. Klepp, H. Lemmel, S. Sponar Y. Hasegawa, H. Rauch

Atominstitut der Österreichischen Universitäten

QMFPA, December 2006 – p. 1/34

Outline

Neutron Interferometry Basics

- Interferometry
- Polarimetry
- UCNMR
- Phases
 - Confinement induced phase
 - Geometric Phase (spin, spatial, mixed, stability)
 - Dephasing
- Spin-Path Entanglement
 - State Tomography
 - Bell Inequality Test Quantum Contextuality

Self interference of massive particle (phase space density $\approx 10^{-14}$)

H. Rauch, W. Treimer and U. Bonse, PLA **47** 369 (1974).

J Time-Independent Schrödinger Equation: $\frac{\hbar^2}{2m} \left[\Delta + \frac{2m}{\hbar^2} \left(E - V(\vec{r}) \right) \right] \psi(\vec{r}) = 0$

- **J** Time-Independent Schrödinger Equation: $\frac{\hbar^2}{2m} \left[\Delta + \frac{2m}{\hbar^2} \left(E V(\vec{r}) \right) \right] \psi(\vec{r}) = 0$
- Wavefunction: $\psi(\vec{r}) = \frac{1}{(2\pi)^{3/2}} \int a(\vec{k}) e^{i\vec{k}\cdot\vec{r}} d^3k \otimes \psi_{spin}$

- **J** Time-Independent Schrödinger Equation: $\frac{\hbar^2}{2m} \left[\Delta + \frac{2m}{\hbar^2} \left(E V(\vec{r}) \right) \right] \psi(\vec{r}) = 0$
- Wavefunction: $\psi(\vec{r}) = \frac{1}{(2\pi)^{3/2}} \int a(\vec{k}) e^{i\vec{k}\cdot\vec{r}} d^3k \otimes \psi_{spin}$
- **•** Typical Potentials $V(\vec{r})$:
 - Scalar Fermi Potential (Nuclear Interaction): $V_N(\vec{r}) = \frac{2\pi\hbar^2}{m} b_c N$ \rightarrow phase shift $|\psi\rangle \mapsto e^{iNb_c\lambda D} |\psi\rangle$
 - Vector Potential (Magnetic interaction): $V_M(\vec{r}) = -\vec{\mu_n} \cdot \vec{B}$
 - \rightarrow Spinor rotation $|\psi_{spin}\rangle \mapsto U|\psi_{spin}\rangle$, $(U = e^{-i\frac{\omega_L t}{2}\vec{\sigma}_n} \in SU(2))$

- **J** Time-Independent Schrödinger Equation: $\frac{\hbar^2}{2m} \left[\Delta + \frac{2m}{\hbar^2} \left(E V(\vec{r}) \right) \right] \psi(\vec{r}) = 0$
- Wavefunction: $\psi(\vec{r}) = \frac{1}{(2\pi)^{3/2}} \int a(\vec{k}) e^{i\vec{k}\cdot\vec{r}} d^3k \otimes \psi_{spin}$
- **9** Typical Potentials $V(\vec{r})$:
 - Scalar Fermi Potential (Nuclear Interaction): $V_N(\vec{r}) = \frac{2\pi\hbar^2}{m} b_c N$ \rightarrow phase shift $|\psi\rangle \mapsto e^{iNb_c\lambda D} |\psi\rangle$

Vector Potential (Magnetic interaction): $V_M(\vec{r}) = -\vec{\mu_n} \cdot \vec{B}$

 \rightarrow Spinor rotation $|\psi_{spin}\rangle \mapsto U|\psi_{spin}\rangle$, $(U = e^{-i\frac{\omega_L t}{2}\vec{\sigma}_n} \in SU(2))$

H. Rauch and S. A. Werner, Neutron Interferometry Clarendon Press, Oxford (2000).

Polarimetry

- Spin superposition, instead of different paths $(|+x\rangle = \frac{1}{\sqrt{2}}(|+z\rangle + |-z\rangle)$
- **9** $\frac{\pi}{2}$ -flip $\hat{=}$ beamsplitter
- Phase is encoded in the final polarization

Intensity:
$$I = |\langle +z | \hat{U}_{out}^{-\pi/2} \hat{U}_{L'}^{2n\pi-\eta} \hat{U}_0(\xi, \delta, \zeta) \hat{U}_L^{\eta} \hat{U}_{in}^{\pi/2} |+z \rangle |^2$$

Measured phase: $\phi \equiv \arg \langle \psi_0 | \psi \rangle = \arg \langle +z | \hat{U}_0 | +z \rangle$

UCNMR

- polarized Ultra Cold Neutrons (UCN's)
- Iow velocity $\approx 5m/s$ ($10^{-7}eV$)
- Fermi potential e. g. $2 \times 10^{-7} eV$ for stainless steel
- reflection at material wall
- neutron bottle
- wrap coils around for magnetic field
- polarimetric measurement

Confinement Induced Phase Shift

H. Rauch and H. Lemmel. Measurement of a confinement induced neutron phase. Nature **417**, 630-632 (2002)

- transverse confinement
- discrete transverse energy levels
- increase of transverse momentum
- decrease of longitudinal momentum \rightarrow phase shift

 ≈ 250

neutron wavelength neutron energy level energies wall potential wall material channel width channel length number of channels

 $\lambda = 1.86 \cdot 10^{-10} \text{m}$ E = 0.023 eV $E_n = 0.42, 1.7, 3.7, \dots \text{peV}$ $V_0 = Nb_c 2\pi\hbar^2/m \approx 54 \text{neV}$ silicon $a = 20\mu\text{m}$ L = 2 cm

M. Lévy-Leblond. Phys. Lett. A 125, 441-442 (1987); D. M. Greenberger, Physica B 151, 374-377 (1988)

J.

Measured phase shift

Calculated Phase Shift: $\Delta \phi = 2.5^{\circ}$ Measured Phase Shift: $\Delta \phi = 2.8(4)^{\circ}$

From falling cats...

A falling cat always lands on its feet.

R. Montgomery, Commun. Math. Phys. 128, 565 (1990).

QMFPA, December 2006 – p. 9/34

...to Quantum Geometric Phases

Adiabatic, Cyclic Evolution of eigenstates

Berry phase

[Proc. R. S. Lond. A 392, 45 (1984)]

$$\begin{aligned} |\Psi(\tau)\rangle &= e^{-i\phi_d} e^{i\phi_g(\mathcal{C})} |n(R(\tau))\rangle \\ \phi_d(\tau) &= \frac{1}{\hbar} \int_0^{\tau} dt E_n(t) \\ \phi_g(\mathcal{C}) &= \oint dR \cdot \langle n(R) | \nabla_R | n(R) \rangle \end{aligned}$$

$$\phi_g = -\frac{\Omega}{2}$$

 $H(R(t))|n(R(t))\rangle = E_n(t)|n(R(t))\rangle$

Geometric Phase in a Neutron Interferometer

- Spin-Flipper in one path rotates spin about axis \vec{n} in x-y-plane
- Direction of axis depends on the phase

Geometric Phase in a Neutron Interferometer

- Spin-Flipper in one path rotates spin about axis \vec{n} in x-y-plane
- Direction of axis depends on the phase
- \boldsymbol{E}_{kin} In addition: Photon exchange $\hbar \omega = 2\mu B$ RF-Flip $|\downarrow\rangle$ $2\hbar\omega$ ħω $|\downarrow\rangle$ $|\uparrow\rangle$ *χ***-PASE SHIFTER** GUIDE FIELD B, POLARIZER $\overline{P}(\gamma - \omega t)$ (MAGNETIC FIELD $\pi/2$ SPIN-TURNER PRISM) ANALYZER (SUPERMIRROR) RF-COIL (ω) PERFECT CRYSTAL DETECTOR INTERFEROMETER P(x) (O-BEAM) RF-COIL (ω/2)

Geometric Phase in a Neutron Interferometer

- Spin-Flipper in one path rotates spin about axis \vec{n} in x-y-plane
- Direction of axis depends on the phase
- In addition: Photon exchange $\hbar \omega = 2\mu B$
- 1st spin flipper: $\sin \omega t$; 2nd spin flipper: $\sin(\frac{\omega t}{2} + \phi)$
- Different frequencies: Compensation of different energies

Orange-slice geometric phase

Alltogether: "Orange-slice" shaped path \rightarrow geometric phase

S. Sponar, J. Klepp, R. Loidl, S. Filipp and Y. Hasegawa (in preparation).

Spatial geometric phase

- 2-loop interferometer, unpolarized neutrons
- Geometric phase due to spatial degrees of freedom (2-level system)
- Phase Shifts $e^{i\chi_1}$, $e^{i\chi_2}$; Aborber (Transmission *T*)

Spatial geometric phase

- 2-loop interferometer, unpolarized neutrons
- Geometric phase due to spatial degrees of freedom (2-level system)
- Phase Shifts $e^{i\chi_1}$, $e^{i\chi_2}$; Aborber (Transmission *T*)

 $I = \langle \psi'_r | \psi'_r \rangle + \langle \psi'_{tf} | \psi'_{tf} \rangle + 2 |\langle \psi'_r | \psi'_{tf} \rangle | \cos(\eta - \arg \langle \psi'_r | \psi'_{tf} \rangle)$

Superposition of Path 1 ($|p\rangle$) & Path 2 ($|p^{\perp}\rangle$ due to beamsplitter, absorber (*T*) and phase shifter ($\Delta \chi = \chi_2 - \chi_1$):

$$|\Psi_{tf}\rangle \propto |p^{\perp}\rangle + e^{i\Delta\chi}\sqrt{T}|p\rangle$$

S. Filipp, Y. Hasegawa, R. Loidl, and H. Rauch. PRA 72 021602(R) (2005) (eprint: quant-ph/0412038)

(1)

$$|\Psi_t\rangle = \frac{1}{\sqrt{2}}(|p\rangle + |p^{\perp}\rangle) \tag{2}$$

$$|\Psi_t\rangle = \frac{1}{\sqrt{2}}(|p^{\perp}\rangle + \sqrt{T}|p\rangle) \tag{3}$$

$$|\Psi_{tf}\rangle = \frac{1}{\sqrt{2}}(|p^{\perp}\rangle + e^{i\Delta\chi}\sqrt{T}|p\rangle)$$
(4)

 $|\psi_r'
angle \propto e^{i\Delta\chi}\sqrt{T}(|p
angle+|p^{\perp}
angle)$

 $I = |e^{i\eta}|\psi_r'\rangle + |\psi_{tf}'\rangle|^2 = \langle \psi_r'|\psi_r'\rangle + \langle \psi_{tf}'|\psi_{tf}'\rangle + 2|\langle \psi_r'|\psi_{tf'}'\rangle|\cos(\eta - \arg\langle \psi_r'|\psi_{tf}'\rangle)$

$$\Phi = \arg\langle \psi_r' | \psi_{tf}' \rangle = \frac{\chi_1 + \chi_2}{2} - \arctan\left[\tan\left(\frac{\Delta \chi}{2}\right) \left(\frac{1 - \sqrt{T}}{1 + \sqrt{T}}\right) \right]$$
(5)

$$\Theta MFPA, December 2006 - p. 14/34$$

Results - 4.1mm/0.5mm & 4.1mm/4.1mm

Mixed state phase - Polarimetry

J. Klepp, S. Sponar, Y. Hasegawa, E. Jericha, G. Badurek. PLA 342 48 (2005).

$$|\psi\rangle \rightarrow \mathcal{Q} = \sum_{i} \frac{(1-\mathbf{r}_{i})}{2} |\psi_{i}\rangle \langle \psi_{i}|$$

$$\phi_g \mapsto \phi_\rho \equiv \arg \operatorname{Tr}[U\rho] = \arg \sum_i p_i \langle \psi_i | U | \psi_i \rangle$$

Mixed state phase - Polarimetry

J. Klepp, S. Sponar, Y. Hasegawa, E. Jericha, G. Badurek. PLA 342 48 (2005).

Larsson and Sjöqvist, PLA 315 12 (2003)

Production of mixed states

Electronic Random Noise fluctuations produces dephasing.

Results

Mixed state phase ϕ_{ρ} :

$$\phi_{\rho} = \arccos \sqrt{\frac{I_{min} - (1 - r)/2}{I_{min} - (1 - r)/2 + r^2 ((1 + r)/2 - I_{max})}}$$

J. Klepp, S. Sponar, Y. Hasegawa (in preparation).

Dephasing...

Noise in one interferometer arm leads to dephasing. [M. Baron, H. Rauch and M. Suda, J. Opt. B 5, 5241 (2003).]

... and how to fight it

By applying equal magnetic fields in both arms interference fringes can be retrieved.

Geometric dephasing

DeChiara and Palma [PRL 91, 090404 (2003)]:

- Adiabatic evolution with small fluctuations of the direction of the magnetic field
- Perturbations in the magnetic field induce deviations in phase, but ϕ_g is stabilizing for increasing time
 - Basic ingredients: Spin-1/2 particles (neutrons) + controllable 3D- magnetic field.

Numerics

Variance of geometric phase vanishes for long evolution time:

Numerics

Variance of geometric phase vanishes for long evolution time:

Mean Geometric Phase $\bar{\phi}_g$ equal to noisefree geometric phase (1st order). But:

Setup

PF2, ILL, Grenoble:

Ramsey - Fringes: (Guide-Field: 89 mG, ω = 1829(10) rad/s)

Decoherence still too dominant ($T_2 = 20(5)$ ms)!

Spin-Path Entanglement

Photons

2-particle entanglement

$$|\Psi
angle = rac{1}{\sqrt{2}} \left(|H
angle_1 \otimes |V
angle_2 + |V
angle_1 \otimes |H
angle_2
ight)$$

photo: Kwiat and Reck

Spin-Path Entanglement

Photons

2-particle entanglement

Neutrons

single particle spin-path entanglement, paths in interferometer analogous to 2^{nd} particle

$$|\Psi
angle = rac{1}{\sqrt{2}} \left(|H
angle_1 \otimes |V
angle_2 + |V
angle_1 \otimes |H
angle_2$$

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle \otimes |I\rangle + |\downarrow\rangle \otimes |II\rangle\right)$$

photo: Kwiat and Reck

State Tomography

Matrix-representation of Bell state $|\Psi^+\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle \otimes |I\rangle + |\downarrow\rangle \otimes |II\rangle)$

$$|\Psi^+
angle\langle\Psi^+| = rac{1}{2} \left(egin{array}{ccccc} 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 1 \end{array}
ight)$$

Basis: $\{|\uparrow\rangle|I\rangle, |\uparrow\rangle|II\rangle, |\downarrow\rangle|I\rangle, |\downarrow\rangle|I\rangle\}$

In general, a (not normalized) bipartite state is determined by 16 parameters

Measurement Scheme

Observables: Projective Measurements $P_a = 1/2(1 + |a\rangle\langle a|)$

Path: $\begin{cases} \chi = 0, \frac{\pi}{2} & P_{+x}^{\nu}, P_{+y}^{\nu} \\ \text{beamblock I,II} & P_{+z}^{p}, P_{-z}^{p} \end{cases}$ Spin: $\begin{cases} \alpha = 0, \pi & P_{+z}^{s}, P_{-z}^{s} \\ \alpha = \pi/2 & P_{+x}^{s}, P_{+y}^{s} \end{cases}$ Example: $< P^{p}_{\pm x}P^{s}_{\pm z}>, < P^{p}_{\pm y}P^{s}_{\pm z}>$ $< P_{\pm z}^{p} P_{\pm x}^{s} > , < P_{\pm z}^{p} P_{\pm z}^{s} >$ Helmholtz Coil DB. (Guide Field) H-Detector H-Detector Mu-Metal Phase Shifter (χ) Mu-Metal Phase Shifter Spin-Turner Spin-Turner Magnetic Magnetic Prism $\leftarrow \otimes \otimes |II\rangle$ Prism Spin Rotator Spin Rotator (a) Heusler Heusler $\rightarrow \otimes |1\rangle$ $\rightarrow \otimes |I\rangle$ Crystal Crystal Beam stopper Larmor Beam stopper Larmor Accelerator Accelerator Neutron Interferometer Neutron Interferometer

 \rightarrow 16 combinations

Measurement Schemes

Three different states:

1.
$$|\Psi_1\rangle = |+x\rangle|I\rangle + |-x\rangle|II\rangle$$

2. $|\Psi_2\rangle = |-x\rangle|I\rangle + |+x\rangle|II\rangle$
3. $|\Psi_3\rangle = |+x\rangle(|I\rangle + |II\rangle)$
Magnetic Prism
Neutrons
Neutrons
Magnetic Prism
Neutrons
Neutrons
Magnetic Prism
Neutrons
Neutrons
Neutrons
Magnetic Prism
Neutrons
Neutro

Results

 $|\Psi_1\rangle = |+x\rangle|I\rangle + |-x\rangle|II\rangle \quad |\Psi_2\rangle = |-x\rangle|I\rangle + |+x\rangle|II\rangle \quad |\Psi_3\rangle = |+x\rangle(|I\rangle + |II\rangle)$

F=0.785

F=0.749

F=0.908

Y. Hasegawa, J. Klepp, S. Filipp, R. Loidl and H. Rauch (in preparation).

Bell Inequalities

Entanglement leads to violation of Bell-type Inequality

 \blacksquare \rightarrow spin-path entangled state also violates a Bell Inequality

CHSH- Inequality: $-2 < S = \mathcal{E}(E_1, E_3) + \mathcal{E}(E_1, E_4) + \mathcal{E}(E_2, E_3) - \mathcal{E}(E_2, E_4) < 2$

$$\mathcal{E}(E_i, E_j) = \langle \Psi | (n_i \sigma) \otimes (n_j \sigma) | \Psi \rangle = \frac{N_{ij}(+, +) + N_{ij}(-, -) - N_{ij}(+, -) - N_{ij}(-, +)}{\sum N_{ij}(\pm, \pm)}$$
$$N_{ij}(\pm, \pm) = \langle \Psi | P_i^s \otimes P_j^p | \Psi \rangle$$

- *Photons:* Polarization of particle 1 and 2 along $n_{1,2}$ -axis
- Neutrons: Spin-polarization along *n*-axis and "which-path" by rotation of phase shifter
- Quantum Mechanics predicts non-local/contextual correlations

$$S_{\text{max}} = 2\sqrt{2}$$
 (Tsirelson Bound)

Measurements

Violation of BI with Neutrons

Hasegawa, Loidl, Badurek, Baron and Rauch. Nature 425 (2003) 45.

Summary and Outlook

- Measurement of phases with different neutron interferometry techniques:
 - Interferometer: Confinement induced phase shift, Spinor geometric phase, Spatial geometric phase, Dephasing
 - Polarimeter: Mixed state geometric phase
 - UCNMR: Dephasing of the geometric phase
- Spin-Path entanglement
 - State tomography
 - Bell inequality test
- Forthcoming experiments:
 - Dephasing of the geometric phase
 - Geometric phase and entanglement
 - Quantum Contextuality Kochen-Specker-like contradictions
 - Irreversibility
 - Phase of non-unitary transformation

