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summary

intro to Holonomic Quantum Computation

on the Adiabatic Limit

the noisy case

Holonomic Gates at finite time



1. Hamiltonian depending on a set of 
(controllable) parameters (x,y,z,...)

2. an eigenspace depending smoothly
on the parameters (x,y,z...)

3. a „balanced“ working time: short
enough (fast gates + decoherence) 
and long enough (Adiabatic Limit)

three ingredients (at least) are needed to define an HG:

intro to Holonomic Gates

[Zanardi, Rasetti PLA 1999]
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• trapped ions [Duan et al. Science 2001]

• Josephson Junctions [Faoro et al. PRL 2003]

• quantum dots [Solinas et al. PRA 2003]

description of the system (1)
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computational space
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description of the system (2)

At the north pole:
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description of the system (3)
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a loop around the north pole



S S→

0 1 ' Uψ α β ψ ψ= + → =
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description of the system (4)

P P→

a loop around the north pole

...but only in the adiabalic limit !

ω



τΩ →∞

Dynamical Transformation

Schrödinger equation

Vτ

Adiabatic Transformation

a proper set of differential equation

U

|| || 0V Uτ − →

we take the point of view of the proof of the adiabatic thereom by Kato
[Kato J.Phys.Soc.Jap. 1951]

the Adiabatic Limit (1)



the Adiabatic Limit (2)

Dynamical Transformation
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Adiabatic Transformation
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• in the AL the transformation at the end of the loop depends only on 
the area of the loop

• H.G. are considered to be robust against parametric noise....

ε

2δω ε

the noisy case (1)



1. before they take the adiabatic limit
2. after they add a noise in the loop

...this qualitative argument was studied quantitatively in [Solinas et al. PRA 2004]...

the noisy case (2)

1
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τ
τ

three regimes were found:

1
corr

τ
τ

high fidelity

intermediate values low fidelity

1τΩ



the noisy case (3)

150τΩ
0.1ε = Ω

[Solinas et al. PRA 2004]



[Florio et al. PRA 2006] considered a special class of 
loops which „mimic“ the adiabatic dynamics far 
before the adiabatic limit is reached....

...in operational time τ

18τΩ

finite time gates (1)

/ 2ω π=

yU iσ= −



Average Gate Fidelity 
[Nielsen PLA 2002] between
the finite time gate and the
Adiabatic Gate

finite time gates (2)

approaching AL

[Florio et al. PRA 2006]
18τΩ



1. it can be argued that it is more robust against
decoherence [Trullo et al. Las.Phys. 2006]

2. what happen in presence of parametric noise? 
does the robustness argument still hold???

This gate mimics the Adiabatic Limit....
...but in what sense???

questions



we would like to understand the dynamics
in the operational time τ with
perturbations in the control parameters...

some models of perturbations in the
control parameters were considered...

the first idea was that the response of 
system should depend on the
perturbation typical frequency... so we
considered a monochromatic
perturbation...

parametric perturbations
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noisy case the loop
itself depends on τ

ideal case: 
the loop is
independent 
on τ

monochromatic perturbation (1)

1.solve the
Schöredinger
equation with noise

2.compare with the
Adiabatic
Transformation in the
ideal case
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breakdown of fidelity

high fidelity

monochromatic perturbation (3)

at the first optimal 
operational time



the spectrum is preserved

analytical solution

stepτ smaller fidelity

noise models (1)
noise on the sphere

random step in the angular variables ,ϑ ϕ

at the first optimal 
operational time



random steps in the coupling constants x, y, z

the spectrum is not preserved

0.3ε = Ω

0.1ε = Ω

0.2ε = Ω

fidelity decreases

noise models (2)
noise outside the sphere

at the first optimal 
operational time

stepτ



first optimal operational time

fourth optimal operational time

relation with longer times (1)
noise on the sphere

18τΩ

75τΩ



noise outside the sphere

first optimal 
operational 
time

third optimal operational time

0.1ε = Ω

relation with longer times (2)

18τΩ

56τΩ
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relation with longer times (2)
noise outside the sphere



robustness argument applies only in 
the adiabatic limit

the nature of these shorter-time
Holonomic Gates is not completely
clear

surprise: they can be more robust 
against parametric noise (and 
decoherence)

conclusions
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