

Impurities induced dephasing in solid state qubits

E. Paladino G. Falci **M. Sassetti U. Weiss**

Matis CNR-INFM & SMT **-** DMFCI Catania

Lamia CNR-INFM & Univ. Genova University of Stuttgart

"Quantum Mechanics: from funda mental problems to applications", Bertinoro 6/12/ 2006

mat *Nanoscience*

Solid-state qubits…

- ☺ Scalability, integration, easy tunable
- / BUT solid-state noise, crosstalk, …

Tasks of present research on SC nanostructures

- Identification of major noise sources and quantitative estimate of the ensuing decoherence
- Measurement of decoherence rate of single qubits Major activity of all experimental groups
- $\mathcal{L}_{\mathcal{A}}$ Measurement/investigation of decoherence rates in two-qubit circuits

Emerging activity

 $\mathcal{L}_{\mathcal{S}}$ Quantum control

Major activities of all theory + experimental groups

Nanoscience

Noise sources in SC qubits

 $Z(\omega)$ electromagnetic fluctuations of the circuit (**gaussian**)

discrete noise due to fluctuating **background charges (BC)** trapped in the substrate or in the junction

- trapped flux in mesoscopic SQUIDs
- trapped flux at the junctions in smaller SQUIDs

quasiparticles/measurement

charge noise (1/f)

 \leftrightarrow switching impurities close to the device Paladino, Faoro, Falci, Fazio, PRL 2002

¾**THE** problem in high Q charge based qubits ¾Affects two-qubit operations in spin-qubits

Nanoscience

Noise characterization

•Noise due to *charged bistable impurities [→] RTN*

Nanoscience

Noise characterization

Variety of observations, material & device dependent

FOCUS: single impurity model

- ¾ Collection of impurities may originate 1/f + f noise
- ¾ Uncontrollable dynamical impurities: expected relevant limitation for multi-qubit on-chip devices

mati *Nanoscience*

Qubit-impurity model

Experiments: V. Bouchiat et al., Journal of Superconductivity (1999)

$$
\mathcal{H}_{qb}=-\frac{\epsilon_q}{2}\,\sigma_z-\frac{E_j}{2}\,\sigma_x
$$

extra charge on the island

Charged impurity couples to

$$
\mathcal{H}_{qb-imp}=-\frac{\epsilon_q}{2}\sigma_z-\frac{E_j}{2}\sigma_x-\frac{v}{2}\sigma_z\,\tau_z\,\pm\,\mathcal{H}_{imp}
$$

Nanoscience

Single impurity model

$$
\mathcal{H}_{imp} = -\frac{\varepsilon}{2}\,\tau_z - \frac{\Delta}{2}\,\tau_x\,\,-\frac{1}{2}\,\hat{X}\,\tau_z\,+\,\,\mathcal{H}_E \qquad \qquad \text{spin-boson model}
$$

$$
\mathcal{H}_E = \sum \omega_\alpha a_\alpha^\dagger a_\alpha \qquad \hat{X} = \sum \lambda_\alpha (a_\alpha + a_\alpha^\dagger)
$$
\n
$$
\mathcal{H}_{qb-imp} = -\frac{\epsilon_q}{2} \sigma_z - \frac{E_j}{2} \sigma_x - \frac{v}{2} \sigma_z \tau_z \pm \mathcal{H}_{imp}
$$
\n
$$
S(\omega) = \pi G(|\omega|) \coth \frac{\nu |\omega|}{2}
$$
\nQubit σ

\nTable qubit τ

\nTarget σ

\nTarget σ

\nTable qubit σ

Paladino, Sassetti, Falci, Chem. Phys. 2005

Leggett et al. 1987, Weiss book 1999

Nanoscience

Impurity time scales

$$
\mathcal{H}_{qb-imp} = -\frac{\epsilon_q}{2}\sigma_z - \frac{E_j}{2}\sigma_x - \frac{v}{2}\sigma_z\tau_z \pm \mathcal{H}_{imp}
$$

$$
S_{\tau}(\omega) = v^2 \int_{-\infty}^{\infty} dt \frac{1}{2} \left(\langle \tau_s(t) \tau_s(0) + \tau_s(0) \tau_s(t) \rangle - \langle \tau_s \rangle_{\infty}^2 \right) e^{i\omega t}
$$

Impurity "correlation time"

Nanoscience

Expected dynamical regimes for the qubit

$$
\mathcal{H}_{qb-imp} = -\frac{\epsilon_q}{2}\sigma_z - \frac{E_j}{2}\sigma_x - \frac{v}{2}\sigma_z \tau_z \pm \mathcal{H}_{imp}
$$
\n
\nWeak-coupling $v \tau_c^{-1} \ll 1$
\n
$$
\Gamma_r = \frac{1}{2}\sin\theta^2 S_\tau(\Omega_1)
$$
\n
$$
\Gamma_\phi = \frac{1}{4}\sin\theta^2 S_\tau(\Omega_1) + \frac{1}{2}\cos\theta^2 S_\tau(0)
$$
\n
$$
\Omega_1 = \sqrt{\epsilon_q^2 + E_j^2} \rightarrow \Omega_1 + shift
$$
\n
$$
\delta_1 \Omega_1 = -\frac{1}{4}\sin^2\theta \mathcal{P} \int_{-\infty}^{\infty} \frac{d\omega}{\pi} \frac{S_\tau(\Omega_1)}{\omega - \Omega}
$$

Modulable correlation time $\tau_c(T) \implies v \tau_c^{-1} \geq 1$ qubit dynamics ??

Nanoscience

Extended Hilbert space qubit+impurity

Nanoscience

Theory for general T and coupling ^v

 $\rho(t)$ qubit+impurity density matrix

At pure dephasing $[\sigma_z, \mathcal{H}] = 0$

relevant dynamical quantities

$$
\langle \sigma_{-} \rangle = \text{Tr} \left(\rho \, \sigma_{-} \right) = \cos \chi \left(\rho_{ac} + \rho_{bd} \right) + \sin \chi \left(\rho_{ad} - \rho_{bc} \right)
$$

coherences

Master equation in the enlarged Hilbert space $\partial_t \rho(t) = -i[\mathcal{H}_0, \rho(t)] - \int_0^\infty dt' \{\frac{1}{4} S(t') [\tau_z, [\tau_z(t'), \rho(t)]]\}$ $+\frac{i}{2}\chi(t')\left[\tau_z,\,\left[\tau_z(t'),\rho(t)\right]_+\right]$

with factorised initial condition

$$
\rho(0) = \rho_{\sigma}(0) \otimes \rho_{\tau}(0) \qquad \rho_{\tau}(0) = \frac{1}{2}\hat{I} + \frac{1}{2}\delta p(0)\,\tau_z
$$

ience

Coherences (secular approximation)

$$
\begin{pmatrix}\n\dot{\rho}_{ac} \\
\dot{\rho}_{bd}\n\end{pmatrix} = \begin{pmatrix}\n-i\delta - \Gamma_1 & \Gamma_{12} \\
\Gamma_{21} & i\delta - \Gamma_2\n\end{pmatrix} \begin{pmatrix}\n\rho_{ac} \\
\rho_{bd}\n\end{pmatrix} \quad \delta = (\Omega_+ - \Omega_-)/2
$$
\n
$$
\begin{pmatrix}\n\dot{\rho}_{ad} \\
\vdots\n\end{pmatrix} = \begin{pmatrix}\n-i\Omega - \Gamma_3 & \Gamma_{34} \\
\Gamma & i\Omega - \Gamma_3 & \Gamma_4 \\
\vdots\n\end{pmatrix} \begin{pmatrix}\n\rho_{ad} \\
\vdots\n\end{pmatrix} \quad S \quad \Omega = (\Omega_+ + \Omega_-)/2
$$

$$
\begin{pmatrix}\n\dot{\rho}_{ad} \\
\dot{\rho}_{bc}\n\end{pmatrix} = \begin{pmatrix}\n-i\Omega - \Gamma_3 & \Gamma_{34} \\
\Gamma_{43} & i\Omega - \Gamma_4\n\end{pmatrix} \begin{pmatrix}\n\rho_{ad} \\
\rho_{bc}\n\end{pmatrix} : S \Omega = (\Omega_+ + \Omega_-)/2
$$
\n
$$
\Gamma_{21} = \frac{1}{2} \tau_{ab} \tau_{cd} [\Gamma_-(\Omega_+) + \Gamma_-(\Omega_-)]
$$

 $\Gamma_{\pm}(\omega) = \pi G(|\omega|)sgn(\omega)[\coth(\beta\omega/2)\pm 1]$ absorption/emission rates bbd d cca a Γ_1 bb bdddcccaaa

Nanoscience

Coherences

$$
\langle \sigma_{-} \rangle_{t} = \frac{e^{i\epsilon_{q}t}}{2} \left[\cos \chi^{2} (e^{\lambda_{1}t} + e^{\lambda_{2}t} - \frac{\Gamma_{12} + \Gamma_{21}}{\Lambda} (e^{\lambda_{1}t} - e^{\lambda_{2}t}) \right]
$$

$$
+ \sin \chi^{2} (e^{\lambda_{3}t} + e^{\lambda_{4}t} + \frac{\Gamma_{34} + \Gamma_{43}}{\Sigma} (e^{\lambda_{3}t} - e^{\lambda_{4}t})) \right]
$$

$$
\lambda_{1/2} = -\frac{\Gamma_{1} + \Gamma_{2}}{2} \pm \frac{\sqrt{(2i\delta + \Gamma_{2} - \Gamma_{1})^{2} + 4\Gamma_{12}\Gamma_{21}}}{2}
$$

$$
\lambda_{3/4} = -\frac{\Gamma_{3} + \Gamma_{4}}{2} \pm \frac{\sqrt{(2i\Omega + \Gamma_{4} - \Gamma_{3})^{2} + 4\Gamma_{34}\Gamma_{43}}}{2}
$$

√ NOTE: ME interpolates between systematic expansions vant for T→0 (systematic weak damping approximation) and in the high-T limit (NIBA) The qubit dynamics is conditioned by crossings of changing mandov

White noise $S(\omega) \equiv 21$ (with $\Gamma = 2\pi K k_B T$)

z

x

Coherences at $\epsilon = 0$

Additional symmetries

$$
\delta = 0 \qquad \Omega_+ = \Omega_- = \Omega = \sqrt{v^2 + \Delta_2^2}
$$

Three complex λ_i

$$
\lambda_2 = -\gamma_\phi \qquad \lambda_{3/4} = -\frac{\gamma_r}{2} \pm \sqrt{\left(\frac{\gamma_r}{2}\right)^2 - \Omega^2}
$$

Simply related to GR relaxation and dephasing rate for τ

$$
\gamma_r = \frac{1}{2}\sin\theta^2 S(\Omega) \qquad \gamma_\phi = \frac{1}{2}\cos\theta^2 S(0)
$$

Crossings: one real \rightarrow two complex conjugate dominant eigenvalues

hat *Nanoscience*

Small temperatures : single real dominat eigenvalues

High temperature: two complex conjugate eigenvalues

mar *Nanoscience*

Crossover modulated by T and v

 $\frac{1}{5}$ 1 1.5 2 v D

0.5

2

Nanoscience

Conclusions & Perspectives

 \checkmark Impurity model showing a complex dynamics \checkmark Crossover effects in the qubit dynamics

Hints:

- •High temperatures saturation of dephasing $\rightarrow\,$ dynamical decoupling techniques for "dirty" qubits
- •Very low temperatures $\;\rightarrow\;$ small dephasing for "clean" qubits

Paladino, Sassetti, Falci, Weiss, submitted 2006

- \triangleright Effect of a distribution of impurities?
- \triangleright Quantitative indication of the quantum/classical dynamics of the impurity? (purity, concurrence….) c.f. Experiment: Simmonds et.al. PRL 2004