Dynamics of Qubits in Random Environments

Francesco Petruccione School of Physics

QMFPA 2006 Bertinoro

In collaboration with ...

M. Fannes (Leuven)

I. Akhalwaya (Durban)

Centre for Quantum Technology

pen Quantum Systems -Non-Markovia Monenom Stochastic sin -High Energ **Relativistic Quantum Information**

18. Chris Engelbrecht Summer School in Theoretical Physics

Theoretical Foundations of Quantum Information Processing and Communication

14-24 January 2007

... where the Dolphins come to play!

Microscopic Theory

Total system:

$H = H_S \otimes I_B + I_S \otimes H_B + \alpha H_V$

 $\frac{d}{dt}\rho(t) = -i[H,\rho(t)]$

 $\rho_{\rm S} = {\rm tr}_{\rm B} \rho$

System

Environment

 $\langle A \rangle = \operatorname{tr}_{S} \{ A \rho_{S} \}$

Observables: $A \otimes I_{R}$

 $\frac{d}{dr} \rho_{S}(t) = -i \text{tr}_{B}[H, \rho(t)]$

Dissipation and Decoherence

- Useful: magnetic resonance and laser
 spectroscopy (medical diagnostics)
- Essential: Laser cooling
- Crucial: Quantum measurement and quantum cosmology
- Noxious: Quantum computing

Open Quantum Systems

Decoherence Dissipation				-4-
Metrology Control Communication	T e c h n o	Phenomena Open Quantum	P h y S	Solid state Spintronics Quantum fluids Ultra cold atoms
Computation Information	l o g i	Systems	i C S	Chemical physics Quantum optics
	e s	Environments		Quantum measurement

Bosonic Spins Fermionic Gravitational

The Big Five

Hermitean Random Matrices

Off-diagonal elements:

$$A_{jk} := \text{Random}(0, \frac{1}{\sqrt{2N}}) + i \text{ Random}(0, \frac{1}{\sqrt{2N}})$$
$$\forall \ 1 < j < k \le N$$

Diagonal elements:

$$A_{jj} := \text{Random}(0, \frac{1}{\sqrt{N}})$$

Gaussian distributed

Eigenvalue spectrum of random matrices

Eigenvalue Spectrum of random matrices

Wigner's Semi-Circle Law

Limiting distribution of eigenvalues of random matrices

$$f(x) = \frac{1}{2\pi}\sqrt{4 - x^2}$$

If X is standard semicircular distributed:

$$\langle X^{2n+1} \rangle = 0$$
$$\langle X^{2n} \rangle = \frac{1}{n+1} \binom{2n}{n} = C_n$$

Lit: E P Wigner, Ann. Math. 62 (1955)

Freeness

In the limit of large random matrices:

$$\left\langle \left(x^{m_1} - \langle x^{m_1} \rangle\right) \left(y^{n_1} - \langle y^{n_1} \rangle\right) \cdots \left(y^{n_k} - \langle y^{n_k} \rangle\right) \right\rangle = 0$$

x, y are in free relation!

E.g.:
$$\langle xyxy \rangle = \langle x^2 \rangle \langle y \rangle^2 + \langle x \rangle^2 \langle y^2 \rangle - \langle x \rangle^2 \langle y \rangle^2$$

(For free probability theory see, e.g., Voiculescu, Speicher) 13

Qubit in random environment

Hamiltonian of the coupled system:

$$h = \begin{bmatrix} \varepsilon + x & \lambda y \\ \lambda y & x \end{bmatrix}$$

x, y: Hermitean random
 environment operators
 λ: coupling constant
 ε: gap between ground and excited state

The initial condition

Qubit decoupled from environment:

$$\rho_0 = \begin{bmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{bmatrix}$$

 $\rho_{11} \ge 0, \ \rho_{11} + \rho_{22} = 1, \ \rho_{21} = \overline{\rho_{12}}, \ \text{and} \ |\rho_{12}|^2 \le \rho_{11}\rho_{22}$ Equivalently: $\rho_0 = \frac{1}{2} \left(1 + \overline{r_0} \cdot \overline{\sigma}\right)$ Bloch vector

Time evolution

 $U(t) = e^{-iHt}$

- Numerically carry out for sample H.
- Apply to $\rho(0)$
- Environment at infinite temperature: $1_{N \times N}$
- Trace out the environment.

$$\rho(0) = \begin{pmatrix} \rho_{11}(0) & \rho_{12}(0) \\ \rho_{21}(0) & \rho_{22}(0) \end{pmatrix} \otimes \mathbf{1}_{N \times N}$$

Reduced dynamics of the qubit

$$t \mapsto \left\langle \operatorname{Tr}(\rho_0 \, u(t) \,\overline{\sigma} \, u(t)^{\dagger}) \right\rangle$$

In the interaction picture:

$$t \mapsto \left\langle \operatorname{Tr} \left(\rho_0 \, U_0^{\dagger}(t) \, U(t) \, \overline{\sigma} \, U(t)^{\dagger} \, U_0(t) \right) \right\rangle =: \operatorname{Tr} \rho(t) \, \overline{\sigma}$$
$$H_0 := \begin{bmatrix} \varepsilon + X & 0 \\ 0 & X \end{bmatrix}$$

Realizations of reduced density matrix

Long time limit

Dyson expansion

$$h = h_0 + \lambda p$$

For an observable *a* of the total system:

$$\begin{split} u_0^{\dagger}(t) \, u(t) \, a \, u^{\dagger}(t) \, u_0(t) \\ &= a + (i\lambda) \int_0^t ds_1 \, [p_{t-s_1}, a] + \cdots \\ &+ (i\lambda)^n \int_0^t ds_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{n-1}} ds_n \, [p_{t-s_1}, [p_{s_1-s_2}, \dots [p_{s_{n-1}-s_n}, a] \dots]] + \cdots \end{split}$$

Freeness:

$$\langle \exp(isx) \rangle = \frac{1}{2\pi} \int_{-2}^{2} d\zeta \sqrt{4 - \zeta^{2}} e^{is\zeta} = \frac{J_{1}(2s)}{s}$$
20

Reduced density matrix

$$\langle (1-\sigma^z)/2 \rangle = \rho_{22} =$$

$$\begin{split} &1 - 2\lambda^2 \int_0^t dx \, (t-x) \, \frac{\cos(\varepsilon x) J_1^2(2x)}{x^2} \\ &+ \frac{4}{3} \lambda^4 \int_0^t dx_1 \int_0^t dx_2 \, (t-x_1) \, (t-x_2) \, \Big\{ \cos(\varepsilon (x_1-x_2)) \\ &\frac{J_1^2(2x_1) \, J_1^2(2x_2) \, J_1^2(2(x_1-x_2))}{x_1^2 \, x_2^2 \, (x_1-x_2)^2} + \cos(\varepsilon (x_1+x_2)) \, \frac{J_1^2(2x_1) \, J_1^2(2x_2) \, J_1^2(2(x_1+x_2))}{x_1^2 \, x_2^2 \, (x_1-x_2)^2} \Big\} \\ &+ O(\lambda^6) \end{split}$$

Dyson versus exact

Asymptotic values

Ongoing studies

- Analytical solution
- Extended models
- Physical applications

Lit: I. Akhalwaya, M. Fannes, F. P. (almost submitted)

Thank you!

petruccione@ukzn.ac.za
http://quantum.ukzn.ac.za

The Big Five

Open Opanium Systems General strategies: Mattovian

Non-Markovian Simple spin syste

Qubit in Random Environment Outlook

ne qubit in a spin bath vo qubits in a spin bath