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OUTLINE

1. What is erroneous with conventional picture of
entanglement.

2. What is essential.

3. Observables, definition of quantum systems, and
dynamic symmetry.

4. Definition of complete entanglement.

5. Corollaries: relativity of entanglement, single-
particle entanglement, mini-max principle for ro-
bust entanglement.
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Quantum entanglement is closely concerned with
the emerging technologies of quantum cryptogra-
phy and quantum computing. For example, the
quantum key distribution has become recently an
industrial product:
• A. Poppe, A. Fedrizzi, R. Ursin, H.R. B̈ohm, T. L̈orunser, O. Maurhardt,
M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A.
Zeilinger, Optics Express12, 3865 (2004)

• J. Ouelette, The Industrial Phys.10, 22 (2004)

At the same time, entanglement prompts a re-
comprehension of quantum mechanics. It should
begin with the very definition of quantum entan-
glement and its quantification.
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The first principle that we use in our analysis is for-
mulated as follows:
“We must not think of the things we could do with, but only of the things
that we can’t do without”.
• Jerome K. Jerome,Three Men in a Boat, to Say Nothing of the Dog
(1889)

Thus, as the first step, we should try to separate
essential from accidental.
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Conventional definitions of en-
tanglement
Definition I. Entanglement is usually associated
with quantumnonlocality. This simply means that
measurements onspatially separatedparts of a
quantum system may instantaneously influence one
another. Physically this is caused by quantum cor-
relations between the parts of the system. Once
created, those correlations keep on surviving even
after spatial separation of parts.
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Question:

Do we have entanglement if
parts of a quantum system are
correlated but not separated?

Answer:

Definitely yes!
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In particular, this means that a single particle can
be entangled with respect toits intrinsic degrees of
freedom.
• H. Barnum, E. Knill, G. Ortiz, R. Somma, and L. Viola, Phys. Rev.
Lett. 92, 107902 (2004)

• M.A. Can, A.A. Klyachko, and A.S. Shumovsky, J. Opt. B: Quant.
Semiclass. Opt.7, L1 (2005)

• S.J. van Enk, Phys. Rev. A72, 064306 (2005)

• A.A. Klyachko and A.S. Shumovsky, J. Phys: Conf. Series36, 87
(2006);E-print quant-ph/0512213
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Definition II. Another common opinion is that the
entanglement of multipartite systems defined in the
Hilbert space

H = HA ⊗HB ⊗ · · ·

can be associated withnonseparabilityof states
ψ ∈ H with respect to the parts of the system.
• E.g., see: D. Bruß, J. Math. Phys.43, 4237 (2002)

This statement, which is undoubtedly valid in the
case of bipartite systems, does not have a lucid
sense for multipartite entanglement. It also has
no meaning in the case of single-particle entangle-
ment.
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Example
is provided by three-qubit states, whose classifica-
tion has been constructed in
• A. Miyake, Phys. Rev. A67, 012108 (2003)

State Type 3-part entanglement2-part entanglement
GHZ nonseparable yes no
W nonseparable no yes

Bi-separable separable no yes
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Definition III. Entanglement is also associated with
violation of different Bell-type conditions of clas-
sical realism. However,unentangled states can also
manifest violation of those conditions.

• A.A. Klyachko,E-print quant-ph/0206012

• H. Barnum, E. Knill, G. Ortiz, and L. Viola, Phys. Rev. A68 032308
(2003)

• A.A. Klyachko, J. Phys.: Conf. Series36, 87 (2006)
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Essential:
I. All entangled states of a given system are equiva-
lent to within SLOCC. States from different classes
are SLOCC nonequivalent.
• W. Dür, G. Vidal, and J.I. Cirac, Phys. Rev. A62, 062314 (2000)

• F. Verstraete, J. Dehaene, and B. De Moor, Phys. Rev. A68, 012103
(2003)

• A. Miyake, Phys. Rev. A67, 012108 (2003)

ψE = ( ̂SLOCC) ψCE.
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II. CE is a manifestation of quantum fluctuations in
a stateψCE wherethey come to their extreme.
• M.A. Can, A.A. Klyachko, and A.S. Shumovsky, Phys. Rev. A66,
02111 (2002)

• A.A. Klyachko and A.S. Shumovsky, J. Opt. B: Quant. and Semiclas.
Optics5, S322 (2003)

• For a recent review, see: A.A. Klyachko and A.S. Shumovsky, J. Phys:
Conf. Series36, 87 (2006); quant-ph/0512213
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Basic observables:
Von Neumann theory of quantum measurements:
all Hermitian operators represent measurable phys-
ical quantities.

This assumption has been put into question by
Wick, Wightman and Wigner
• G.C. Wick, A.S. Wightman, and E.P. Wigner, Phys. Rev.88, 101
(1952).

In the case of conventional bipartite entanglement,
only local observablesgive information about
quantum correlations between parts of the system.
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Hermann’s conjecture:for a given quantum sys-
tem, measurable observables form a Lie algebraL
of Hermitian operators acting in Hilbert spaceH of
system under consideration.
• R. Hermann ,Lie Groups for Physicists(Benjamin, New York, 1966)
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We choose orthogonal basisXi of L asbasic ob-
servables, whose measurement give us the whole
allowed information about a given state of the sys-
tem. The corresponding Lie group

G = exp(iL)

determines the dynamic symmetry of the system.
• A.A. Klyachko,E-print quant-ph/0206012

• A.A. Klyachko and A.S. Shumovsky, J. Opt. B: Quant. and Semiclas.
Optics5, S322 (2003)

• A.A. Klyachko and A.S. Shumovsky, J. Phys: Conf. Series36, 87
(2006);E-print quant-ph/0512213
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Example:

A qubit (state in two-dimensional Hilbert space
H2).
? Dynamic symmetryG = SU(2)
? Basic observables = three Pauli operatorsXi =
σi, (i = x, y, z).

N qubits (state inH =
⊗N

j=1H2)

? Dynamic symmetryG =
∏N
j=1 SU(2)

? Basic observables = 3N pauli operators (three
Pauli operators for each part).
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Note:

( ̂SLOCC) = gc ∈ Gc = exp(L ⊗ C).

• F. Verstraete, J. Dehaene, and B. De Moor, Phys. Rev. A68, 012103
(2003)
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Definition of CE states:

ψ = ψCE ∈ H

iff
〈ψ|Xi|ψ〉 = 0 ∀Xi.

• A.A. Klyachko,E-print quant-ph/0206012

• M.A. Can, A.A. Klyachko, and A.S. Shumovsky, Phys. Rev. A66,
02111 (2002)

• A.A. Klyachko and A.S. Shumovsky, J. Opt. B: Quant. and Semiclas.
Optics5, S322 (2003)
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Total variance

V(ψ) =
∑
i

(〈ψ|X2
i |ψ〉 − 〈ψ|Xi|ψ〉2).

Hence
V(ψCE) = max

ψ∈H
V(ψ).

Casimir operatorCH =
∑
iX

2
i acts as a scalar in

any irreducible representationG : H. Thus,

V(ψCE) = CH.
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Corrolaries:
∗ Measure of entanglement of pure states:

µ(ψ) =

√
V(ψ) − Vmin

Vmax − Vmin

• A.A. Klyachko, B.Öztop, and A.S. Shumovsky, Appl. Phys. Lett.88,
124102 (2006)

In particular case of bipartite entanglement, this
measure coincides with general concurrence of
Ref.
• P. Rungta, V. Bǔzek, C.M. Caves, M. Hillery, and G.J. Milburn, Phys.
Rev. A,64, 042315 (2001)
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∗ Relativity of entanglement with respect toG:

A qutrit

|ψ〉 =

1∑
s=−1

ψs|s〉 ∈ H3.

The two symmetries are allowed:G = SU(3) (the
true qutrit). Basic observables are given by eight
Gell-Mann matrices.
C.M. Caves and G.J. Milburn, Opt. Commun.179, 439 (2000)

G′ = SU(2) (the spin-qutrit). Basic observables are
given by three spin-1 operators.
• M.A. Can, A.A. Klyachko, and A.S. Shumovsky, J. Opt. B: Quant.
Semiclass. Opt.7, L1 (2005).
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∗ Single-particle entanglement
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State

|ψ〉 = ψ+| + 1〉 + ψ0|0〉 + ψ−| − 1〉
of a single spin-qutrit with basic observables

Sx =
1√
2

 0 1 0

1 0 1

0 1 0

 , Sy =
i√
2

 0 −1 0

1 0 −1

0 1 0

 , Sz =

 1 0 0

0 0 0

0 0 −1


can manifest entanglement. For example, the states
|0〉 and

1√
2
(| + 1〉 + | − 1〉)

obey the condition of complete entanglement

〈Sα〉 = 0 α = x, y, z.
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What does it mean?
Clebsch-Gordon decomposition

H2 ⊗H2 = H3 ⊕HA.

If | ↑〉 and| ↓〉 are basis states ofH2 (dimH2 = 2), then the symmetric
states

|s〉 =


| ↑↑〉, projection of total spins = 1
1√
2
(| ↑↓〉+ ↓↑〉), projection of total spins = 0

| ↓↓〉, projection of total spins = −1

form the basis ofH3, while the antisymmetric singlet

|A〉 =
1√
2
(| ↑↓〉 − | ↓↑〉).

is associated withHA.
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Examples
z IsotripletI = 1 of π-mesons

|s〉 =

{
±1 chargedπ± mesons

0 neutralπ0 meson

Quark structure ofπ mesons:
| + 1〉 ∼ π+ = ud̄

|0〉 ∼ π0 = (uū + dd̄)/
√

2

| − 1〉 ∼ π− = ūd

z Biphoton

z Deuteron

z Cooper pairs in superfluid3He.
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∗ Mini-max principle for robust entanglement:

Maximum of quantum fluctuations of basic observ-
ables at minimum of energy of the system.
Can MA, Klyachko AA and Shumovsky AS 2002Appl. Phys. Lett.81
5072

• Can MA, ÇakırÖ, Klyachko AA and Shumovsky AS 2003Phys. Rev.
A 68022395

• Çakır Ö, Klyachko AA and Shumovsky AS 2005Phys. Rev. A71
034303
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Thank you for attention!


