

Standard Quantum vs. Heisenberg limit

Initial state $||\Psi_{inp}\rangle \approx |1\rangle|0\rangle + |0\rangle|1\rangle$

Phase shift
$$|\psi(\Theta)\rangle = e^{-i\hat{n}\Theta} |\psi_{inp}\rangle$$

= $e^{i\Theta} |0\rangle |1\rangle + e^{-i\Theta} |1\rangle |0\rangle$

Projective measure

$$= e^{N} |0\rangle |1\rangle + e^{-N} |1\rangle |0\rangle$$

$$\left| \left\langle \psi_{inp} \left| \psi(\Theta) \right\rangle \right|^{2} \approx \cos^{2}(\Theta)$$
with N uncorrelated particles
$$\cos^{2N}(\Theta) \approx \exp[-\Theta^{2} / 4N]$$

$$\Rightarrow \text{ Orthogonality at } \Theta \approx \frac{1}{\sqrt{N}}$$

Entanglement (quantum correlations) can provide sensitivity at the Heisenberg limit $\frac{1}{N}$

Schroedinger cat (NOON) $\left|\psi_{inp}\right\rangle \approx \left|N,0\right\rangle + \left|0,N\right\rangle$ $|\psi_{N}(\Theta)\rangle = e^{-i\hat{n}\Theta}|\psi_{N}\rangle$ = $e^{-iN\Theta}|N,0\rangle + e^{iN\Theta}|0,N\rangle$ $\left| \left\langle \psi_{inp} \left| \psi(\Theta) \right\rangle \right|^2 \approx \cos^2(N\Theta/2)$ $\Rightarrow \text{ Orthogonality at } \Theta \approx \frac{1}{N}$ 0.4 0.3 0.2 Θ/π

Content

1. Standard quantum limit with optical Mach-Zehnder. Exp. @ UCSB

2. Sub standard quantum limit sensitivity with trapped ions NOON states. Exp. data @ NIST

Mach-Zehnder

E. Mach & L. Mach, Wien. Akad. Ber. Klasse 98, 1318 (1889) L. Zehnder, Zeits. f. Instrumentenk 11, 275 (1891) L. Mach, Zeits. f. Instrumentenk 12, 89 (1892); ibid. 14, 279 (1894)

The "classical" Mach-Zehnder

$$\left\langle \hat{M} \right\rangle = \left\langle \hat{N}_{D1} - \hat{N}_{D2} \right\rangle = \left| \alpha \right|^2 \cos(\Theta)$$
$$\left\langle \hat{N} \right\rangle = \left\langle \hat{N}_{D1} + \hat{N}_{D2} \right\rangle = \left| \alpha \right|^2$$

as estimator, choose :

$$\overline{M} = \frac{1}{p} \sum_{i=1}^{p} (N_{D1} - N_{D2}) = \left| \alpha \right|^2 \cos(\Theta_{est})$$

From error propagation ...

$$\Delta \Theta = \frac{\Delta \hat{M}}{\left|\partial \left\langle \hat{M} \right\rangle / \partial \Theta \right|} \frac{1}{\sqrt{p}} = \frac{1}{\sqrt{p |\alpha|^2}} \frac{1}{\sin(\Theta)}$$

The estimated value Θ_{est} of the true phase shift Θ is *defined* as the average of the relative number of particles in *p* independent measurements.

Input state

 $|\Psi_{inp}\rangle = |\alpha\rangle_a |0\rangle_b$

Optimal phase sensitivity
at
$$\Theta = \pi/2$$

Is it possible to reach the SQL for <u>any</u> value of the phase shift ?

Phase estimation experiment

Advantages of the Bayesian approach:

1) Rigorous analysis without statistical assumptions

2) Possibility to consistently include classical noise and detector efficiency

3) Phase estimation with a single measurement. The sensitivity $\Delta \Theta = \frac{1}{\sqrt{N_{D1} + N_{D2}}}$

4) Asymptotically in the number of measurements $\Delta \Theta = \frac{1}{\sqrt{p |\alpha|^2}}$

cfr. the "classical" theory
$$\Delta \Theta = \frac{1}{\sqrt{p |\alpha|^2}} \frac{1}{\sin(\Theta)}$$

Experimental test ?

Mach-Zehnder phase sensitivity

Mach-Zehnder phase sensitivity

 $F(\theta)$ is the Fisher information :

$$F(\theta) = \oint d\mu \, \frac{1}{P(\mu \,|\, \theta)} \left(\frac{\partial P(\mu \,|\, \theta)}{\partial \theta}\right)^2$$

p:number of independent measurements

"Classical" phase estimation \Leftrightarrow information encoded in $N_1 - N_2$ $P(N_1 - N_2 | \theta) \Rightarrow F(\theta) = |\alpha|^2 \sin^2(\theta) \Rightarrow \Delta \theta \ge \frac{1}{\sqrt{p|\alpha|^2}} \frac{1}{\sin(\theta)}$

Bayesian phase estimation
$$\Leftrightarrow$$
 information encoded in $N_1 \& N_2$
 $P(N_1, N_2 | \theta) \Rightarrow F(\theta) = |\alpha|^2 \Rightarrow \Delta \theta \ge \frac{1}{\sqrt{p|\alpha|^2}}$

Interferometry with NOON state

Two-mode entangled state (Schroedinger-cat state) recently created experimentally with photons and ions

P. Walther, *et al.*, *Nature* 429, 158 (2004)M.W. Mitchell, *et al.*, *Nature* 429, 161 (2004)

Z. Zhao, et al., Nature 430, 54 (2004)

H.S. Einsenberg, et al., PRL 94, 090502 (2005)

 $\left|\Psi_{N}\right\rangle = \frac{\left|N\right\rangle\left|0\right\rangle + \left|0\right\rangle\left|N\right\rangle}{\sqrt{2}}$

Theoretical analysis

J.J. Bollinger, et al, PRA 54, R4649 (1995)

Gerry & Campos, PRA 68, 025602 (2003)

Applications in lithography and metrology

A.N. Boto, et al., PRL 85, 2733 (2000)

V. Giovannetti, et al. Science 306, 1330 (2004)

Experiments @ NIST

D. Liebfried, et al., Nature 422, 412 (2003)

D. Liebfried, et al., Science 304, 1478 (2004)

D. Liebfried, et al., Nature 438, 639 (2005)

NOON states with Beryllium ions

$$P(N \downarrow | N, \Theta) = \left| \left\langle N \downarrow \left| \hat{U}_N e^{-i\Theta \hat{J}_z} \hat{U}_N \right| N \downarrow \right\rangle \right|^2 = \cos^2(N \Theta / 2)$$

The probability distributions oscillate with period $2\pi/N$

NOON states with Beryllium ions

The probability distributions oscillate with period $2\pi/N$

Example: N=3

There is not a 1:1 relation between $P(N \downarrow | N, \Theta)$ and Θ

Estimator : in M measurements calculate the M' times you get the output state $|N\downarrow\rangle$

calculate
$$P(N \downarrow | N, \Theta) = \frac{M'}{M} = 0.8$$

Phase estimation at the Heisenberg limit 1/N with NOON states, requires a priori knowledge at the Heisenberg limit $\sim 1/N$

The protocol: 1. Make several independent measurements

2. Carefully choose the number of particles in different measurements

Combining distributions with
$$N = 1, 2, 4, \dots, 2^p$$

 $P(\phi | N_T, \Theta = 0) \propto \prod_{k=0}^p \cos^2\left(\frac{2^k \phi}{2}\right) \approx \exp\left(-\frac{\phi^2}{2} \frac{N_T^2}{6}\right)$
 $N_T = \sum_{k=0}^p 2^k = 2^{p+1} - 1$

The protocol: 1. Make several independent measurements

2. Carefully choose the number of particles in different measurements

Combining distributions with
$$N = 1, 2, 4, ..., 2^{p}$$

 $P(\phi|N_T, \Theta = 0) \propto \prod_{k=0}^{p} \cos^2\left(\frac{2^k \phi}{2}\right) \approx \exp\left(-\frac{\phi^2}{2} \frac{N_T^2}{6}\right)$
 $N_T = \sum_{k=0}^{p} 2^k = 2^{p+1} - 1$

The protocol: 1. Make several independent measurements

2. Carefully choose the number of particles in different measurements

Combining distributions with
$$N = 1, 2, 4, \dots, 2^p$$

 $P(\phi | N_T, \Theta = 0) \propto \prod_{k=0}^p \cos^2\left(\frac{2^k \phi}{2}\right) \approx \exp\left(-\frac{\phi^2}{2} \frac{N_T^2}{6}\right)$
 $N_T = \sum_{k=0}^p 2^k = 2^{p+1} - 1$

The protocol: 1. Make several independent measurements

2. Carefully choose the number of particles in different measurements

UNBIASED PHASE ESTIMATION with SENSITIVITY AT THE HL

Experimental vs. theoretical (ideal) Phase probability distributions

Summary

- 1.Standard Quantum limit with Mach-Zehnder
- 2.Heisenberg limit with Scrhroedinger-cat states
- 3.Bayesian phase estimation theory vs. experiments

NOON states with Beryllium ions

Example: N=3

Introduce a prior knowledge of the order of $\approx \pi/N(\pi/3)$

To increase the phase sensitivity increase the number of particles in the NOON state

Phase estimation at the Heisenberg limit 1/N with NOON states, requires a priori knowledge at the Heisenberg limit

Experimental gain with respect to the standard quantum limit

Bayesian sensitivity with Be ions

Complete a priori ignorance

i) combine the results with N = 1,2,3,4,5,6ii) repeat the measurement M times.iii) multiply Bayesian distributions

For M >> N we have $\Delta \Theta \approx \frac{\alpha}{\sum_{i} N_i \sqrt{M}} \approx \frac{\alpha'}{\sqrt{N_T}}$ gain $\Rightarrow -10 \log_{10}(\alpha)$

Prior constraint of the phase shift

i) constrain the phase shift in $\left[0, \frac{2\pi}{N}\right]$ ii) combine the results with fixed *N* iii) repeat the measurement *M* times iv) multiply Bayesian distributions

The maximum gain is 0.8 db (3.18 db with ideal distributions)

First demonstration of sub shot-noise with atoms

L. Pezze', A. Smerzi, submitted

Mach-Zehnder

E. Mach & L. Mach, Wien. Akad. Ber. Klasse 98, 1318 (1889)
L. Zehnder, Zeits. f. Instrumentenk 11, 275 (1891)
L. Mach, Zeits. f. Instrumentenk 12, 89 (1892); ibid. 14, 279 (1894)

Double-well experiments: Ketterle & coll. PRL 92, 5 (2004), Oberthaler & coll. PRL95, 010402 (2005), J. Schmiedmayer & coll. NaturePhys 1, 57 (2005)

Nonlinear Beam Splitter with BEC

Goal: creation of a Schroedinger cat (NOON) with a number-squeezed state + beam splitter

There are different ways to create a BEC beam splitter. The common problem is to evaluate the role of nonlinearity

L. Pezze', A. Smerzi, G.P. Berman, A.R. Bishop, L.A. Collins, PRA74, 033610 (2006)

Non-interacting limit $E_c = 0$

$$|\psi_{bs}\rangle = e^{-i(K(t)(\hat{a}^{+}\hat{b}+\hat{b}^{+}\hat{a}))t}|N/2, N/2\rangle = \sum_{n=0}^{N} c_{n}|n\rangle|N-n\rangle$$

M.J. Holland & K. Burnett PRL71, 1355 (1993)

Role of interaction

$$|\psi_{bs}\rangle = e^{-i(E_c(\hat{a}^+\hat{a}\,\hat{b}^+\hat{b})/2 + K(t)(\hat{a}^+\hat{b}+\hat{b}^+\hat{a}))t}|\psi_{inp}\rangle$$

Distributions after the beam-splitter

Role of interaction

$$|\psi_{bs}\rangle = e^{-i(E_c(\hat{a}^+\hat{a}\,\hat{b}^+\hat{b})/2 + K(t)(\hat{a}^+\hat{b}+\hat{b}^+\hat{a}))t}|\psi_{inp}\rangle$$

1. The Heisenberg limit of phase sensitivity requires the creation of "noon" (maximally entangled) states and an efficient phase estimation protocol.

2. Optimal phase sensitivity of the "classical" Mach-Zehnder with Bayesian analysis.

3. Conditions for the creations of BEC beam-splitters.

Rabi-Josephson transition

Josephson-Fock Transition

Self-Trapping: the initial energy does not redistribute over different modes-

ineffective beam splitter

Experimental gain with respect to the "standard quantum limit" (shot-noise)

- 1. I discussed the problem of phase estimation in interferometry giving the recipe for a rigorous analysis (based on the Bayes theorem).
- 2. I have shown rigorous calculations of MZ sensitivities
- **3. I discussed how to reach the ultimate limit on phase sensitivity imposed by Quantum Mechanics**

4. I addressed plus and minus of using BEC
 - degrade sensitivity

Creation of number squeezing

$$\left| i \frac{\partial \Psi(\phi, t)}{\partial t} = \left[-\frac{E_c}{2} \frac{\partial^2}{\partial \phi^2} - K N \cos(\phi) \right] \Psi(\phi, t) \right|$$

- A) Initially the phase amplitude is narrow and centered in the minimum of the effective potential.
- B) The splitting of the potential wells corresponds to the decrease of the effective potential. Initially the process is adiabatic.

C) The relative phase is spread over the whole interval.We have complete defasing.

$$\left|\Psi_{N}\right\rangle = \frac{\left|N\right\rangle\left|0\right\rangle + \left|0\right\rangle\left|N\right\rangle}{\sqrt{2}} = \sum_{0}^{N} c_{n}\left|n\right\rangle\left|N-n\right\rangle$$

$$\left|\Psi\right\rangle = \frac{\left|N\right\rangle\left|0\right\rangle + \left|0\right\rangle\left|N\right\rangle}{\sqrt{2}} + \ldots = \sum_{0}^{N} c_{n}\left|n\right\rangle\left|N-n\right\rangle$$

$$\left|\Psi\right\rangle = \frac{\left|N\right\rangle\left|0\right\rangle + \left|0\right\rangle\left|N\right\rangle}{\sqrt{2}} + \ldots = \sum_{0}^{N} c_{n}\left|n\right\rangle\left|N-n\right\rangle$$

0.5

$$\left|\Psi\right\rangle = \frac{\left|N\right\rangle\left|0\right\rangle + \left|0\right\rangle\left|N\right\rangle}{\sqrt{2}} + \ldots = \sum_{0}^{N} c_{n}\left|n\right\rangle\left|N-n\right\rangle$$

$$\left|\Psi\right\rangle = \frac{\left|N\right\rangle\left|0\right\rangle + \left|0\right\rangle\left|N\right\rangle}{\sqrt{2}} + \ldots = \sum_{0}^{N} c_{n}\left|n\right\rangle\left|N-n\right\rangle$$

$$\left|\Psi\right\rangle = \varepsilon \frac{\left|N\right\rangle\left|0\right\rangle + \left|0\right\rangle\left|N\right\rangle}{\sqrt{2}} + \ldots = \sum_{0}^{N} c_{n} \left|n\right\rangle\left|N-n\right\rangle$$
$$\varepsilon \to 0$$

$$\left|\Psi\right\rangle = \varepsilon \frac{\left|N\right\rangle\left|0\right\rangle + \left|0\right\rangle\left|N\right\rangle}{\sqrt{2}} + \ldots = \sum_{0}^{N} c_{n} \left|n\right\rangle\left|N-n\right\rangle$$
$$\varepsilon \to 0$$

$$\left|\Psi\right\rangle = \varepsilon \frac{\left|N\right\rangle\left|0\right\rangle + \left|0\right\rangle\left|N\right\rangle}{\sqrt{2}} + \ldots = \sum_{0}^{N} c_{n} \left|n\right\rangle\left|N-n\right\rangle$$
$$\varepsilon \to 0$$

$$\left|\Psi\right\rangle = \varepsilon \frac{\left|N\right\rangle\left|0\right\rangle + \left|0\right\rangle\left|N\right\rangle}{\sqrt{2}} + \ldots = \sum_{0}^{N} c_{n} \left|n\right\rangle\left|N-n\right\rangle$$
$$\varepsilon \to 0$$

$$\left|\Psi\right\rangle = \varepsilon \frac{\left|N\right\rangle\left|0\right\rangle + \left|0\right\rangle\left|N\right\rangle}{\sqrt{2}} + \dots = \sum_{0}^{N} c_{n} \left|n\right\rangle\left|N-n\right\rangle$$

$$\varepsilon \to 0$$

Nonlinear Beam Splitter with BEC

A key component of a BEC interferometer is the beam splitter.

There are different ways to create a BEC beam splitter. The common problem is to evaluate the role of nonlinearity

Non-interacting limit

 $E_{c} = 0$

Role of interaction

$$|\psi_{bs}\rangle = e^{-i(E_c(\hat{a}^+\hat{a}\,\hat{b}^+\hat{b})/2 + K(t)(\hat{a}^+\hat{b}+\hat{b}^+\hat{a}))t}|\psi_{inp}\rangle$$

Role of interaction

Rabi-Josephson transition

$$\left|C_{n}(t)\right|^{2} = \left|\left\langle N-n,n\left|e^{-i\hat{H}(t)t}\right|\psi_{inp}\right\rangle\right|^{2} \equiv P(n,t)$$

Josephson-Fock Transition

Self-Trapping: the initial energy does not redistribute over different modes-

ineffective beam splitter

- 1. I discussed how to reach the ultimate limit on phase sensitivity imposed by Quantum Mechanics requires the creation of "noon" (maximally entangled) states.
- 2. The problem of phase estimation in interferometry is not trivial. Optimal phase sensitivity of the "classical" Mach-Zehnder with Bayesian analysis.
- 3. Conditions for the creations of efficient BEC beam-splitters.

The Standard Quantum Limit

1) Consider an ensemble of N states $|\Psi_{inp}\rangle \approx (|0\rangle|1\rangle + |1\rangle|0\rangle)^{N}$

2) Phase shift:
$$e^{-i\hat{N}\Theta} |\Psi_{inp}\rangle = (e^{i\Theta}|0\rangle|1\rangle + e^{-i\Theta}|1\rangle|0\rangle)^{N}$$

3) A projective measurement over the initial state gives $\left| \left\langle \Psi_{inp} \left| e^{-i\Theta \hat{N}} \right| \Psi_{inp} \right\rangle \right|^2 \approx \cos^{2N} (\Theta) \approx \exp[-\Theta^2 / 4N]$ $\implies \text{Orthogonality is reached at } \Delta \Theta \approx \frac{1}{\sqrt{N}}$

Interferometry with N uncorrelated particles and/or p independent measurements is bounded by the SQL (shot - noise) sensitivity $1/\sqrt{N p}$

The Heisenberg limit

1) Schroedinger cat (NOON) state : $|\psi_N\rangle \approx |N,0\rangle + |0,N\rangle$

- 2) Phase shift: $e^{-i\hat{N}\Theta} |\psi_N\rangle = e^{-iN\Theta} |N,0\rangle + e^{iN\Theta} |0,N\rangle$
- 3) A projective measurement over the initial state gives

 $\left| \left\langle \psi_N \left| e^{-i\hat{N}\Theta} \right| \psi_N \right\rangle \right|^2 \approx \cos^2(N\Theta/2) \implies \text{Orthogonality is reached for } \Delta\Theta \approx \frac{1}{N}$

Entanglement (quantum correlations) can provide

sensitivity at the Heisenberg limit $\frac{1}{N}$

The "classical" Mach-Zehnder

"classical" phase estimation

as estimator, *choose* :

$$\overline{M} = \frac{1}{p} \sum_{i=1}^{p} (N_{D1} - N_{D2}) = |\alpha|^2 \cos(\Theta_{est})$$

The estimated value Θ_{est} of the true phase shift Θ is *defined* as the average of the relative number of particles in *p* independent measurements.

From error propagation ...

$$\Delta \Theta = \frac{\Delta \hat{M}}{\left|\partial \left\langle \hat{M} \right\rangle / \partial \Theta \right|} \frac{1}{\sqrt{p}} = \frac{1}{\sqrt{p |\alpha|^2}} \frac{1}{\sin(\Theta)}$$

Optimal phase sensitivity at $\Theta = \pi / 2$

Is it possible to reach the SQL for any value of the phase shift ?

ADVANTAGES:

1) Rigorous analysis without statistical assumptions

2) Possibility to consistently include classical noise and detector efficiency

3) Phase estimation with a single measurement. The sensitivity $\Delta \Theta = \frac{1}{\sqrt{N_{D1} + N_{D2}}}$

4) Asymptotically in the number of measurements $\Delta \Theta = \frac{1}{\sqrt{N_{ave}}}$

cfr. the "classical" theory
$$\Delta \Theta = \frac{1}{\sqrt{N_{ave}}} \frac{1}{\sin(\Theta)}$$

These predictions can be tested experimentallyc

Quantum Interferometry

Luca Pezze' Augusto Smerzi

CNR-INFM BEC, Trento, Italy

The phase inference problem

How precisely the unknown phase shift Θ can be infered from the results of p *independent* measurements $\{\varphi_1, \varphi_2, ..., \varphi_p\}$?

Exp. vs. theor. Bayesian distributions $|\alpha|^2 = 1.38$

L. Pezze', A. Smerzi, G. Khoury, Juan Hodelin, D. Bouwmeester, submitted

Bayesian phase estimation

Asymptotically in the number of measurements $\Delta \Theta = \frac{1}{\sqrt{N_{ave}}}$

cfr. the "classical" theory :

$$\Delta \Theta = \frac{1}{\sqrt{N_{ave}}} \frac{1}{\sin(\Theta)}$$

These predictions can be tested experimentally

Exp. with optical MZ and number counting photodetectors @ UCSB *L. Pezze', A. Smerzi, G. Khoury, Juan Hodelin, D. Bouwmeester, submitted*

NOON states with Beryllium ions

Creation:

$$|N\downarrow\rangle \equiv |\downarrow\rangle_1 ... |\downarrow\rangle_N$$
 initial state (gs)
 $\hat{U}_N \equiv e^{-i\frac{\xi\pi}{2}\hat{J}_x} e^{-i\frac{\pi}{2}\hat{J}_x^2}$ NLBS operator

Phase shift:

$$e^{-i\Theta\hat{J}_{z}}\hat{U}_{N}|N\downarrow\rangle = \frac{|N\downarrow\rangle + e^{-i\frac{N\Theta}{2}}i^{\xi+N+1}|N\uparrow\rangle}{\sqrt{2}}$$

Decoding:

$$\hat{U}_{N} e^{-i\Theta \hat{J}_{z}} \hat{U}_{N} | N \downarrow \rangle = \cos\left(\frac{N\Theta}{2}\right) | N \downarrow \rangle + \sin\left(\frac{N\Theta}{2}\right) | N \uparrow \rangle$$

Projective measurement:

$$P(N \downarrow | N, \Theta) = \left| \left\langle N \downarrow | \hat{U}_N e^{-i\Theta \hat{J}_z} \hat{U}_N | N \downarrow \right\rangle \right|^2 = \cos^2(N \Theta / 2)$$
$$P(N \uparrow | N, \Theta) = \left| \left\langle N \uparrow | \hat{U}_N e^{-i\Theta \hat{J}_z} \hat{U}_N | N \downarrow \right\rangle \right|^2 = \sin^2(N \Theta / 2)$$

$$\left| \hat{U}_{N} \right| N \downarrow \rangle = \frac{\left| N \downarrow \rangle + i^{\xi + N + 1} \right| N \uparrow \rangle}{\sqrt{2}}$$

 $\xi = 0$ when N odd, $\xi = 1$ when N is even Molmer & Sorensen, PRL 2000

The two states $|N\downarrow\rangle$ and $|N\uparrow\rangle$ give a different fluorescent signal.

NOON states with Beryllium ions

The probability distributions oscillate with period $2\pi/N$

Is the $2\pi / N$ period enough to conclude that we have a phase sensitivity at the HL?

$$P(N \downarrow | N, \Theta) = \left| \left\langle N \downarrow | \hat{U}_N e^{-i\Theta \hat{J}_z} \hat{U}_N | N \downarrow \right\rangle \right|^2 = \cos^2(N \Theta / 2)$$
$$P(N \uparrow | N, \Theta) = \left| \left\langle N \uparrow | \hat{U}_N e^{-i\Theta \hat{J}_z} \hat{U}_N | N \downarrow \right\rangle \right|^2 = \sin^2(N \Theta / 2)$$