Relativistic Quantum Mechanics and Path Integrals (A.A. 2019/20)

Prof. Fiorenzo Bastianelli

Lecture notes

Relativistic quantum mechanics (updated 21.09.2019)   (old version in italian Equazioni d'onda relativistiche)
Preliminaries on path integrals and classical mechanics (updated 12.11.2019)   (old version in italian Meccanica classica e particelle)
Path integrals (updated 25.11.2019)

Textbooks and references

Relativistic Quantum Mechanics
A classic and useful textbook is:
- Bjorken and Drell, "Relativistic Quantum Mechanics" (Mc Graw-Hill)
Relativistic wave equations (Klein-Gordon, Dirac, Maxwell-Proca) can be studied on QFT textbooks, such as
- M. Srednicki, "Quantum Field Theory" (free on http://www.physics.ucsb.edu/~mark/qft.html) (CUP);
- C. Itzykson, J.B. Zuber, "Quantum Field Theory" (Dover);
- S. Weinberg, "The Quantum Theory of Fields" (CUP).
Useful references for the various types of Green functions (retarded, advanced, etc.) are:
- Itzykson, Zuber, "Quantum Field Theory" - pag. 32-36
- B. DeWitt, "Dynamical Theory of Groups and Fields - pag. 30-34
- de Wit, Smith, "Fields in Particle Theory" - pag. 39-50

Path Integrals
Same textbooks are:
- Feynman and Hibbs, "Quantum Mechanics and Path Integrals"
- Schulman L., "Techniques and Applications of Path Integration"